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Abstract

Modern computers increasingly offload low-level management to base-
board management controllers (BMCs). While the research community
is actively working toward a trustworthy BMC firmware stack, writing
efficient and highly-assured device drivers remains a challenge. One
such example is creating I2C drivers to accommodate devices that imple-
ment non-compatible variations of the communication protocol. Prior
research proposes a model-checked I2C specification, from which device
drivers can be generated. While the viability of this approach has been
demonstrated, there remain several limitations preventing the generated
drivers from being useful in real-world applications.

In this work, we present Efeu, a framework to synthesize assured and
practical drivers from model-checked specifications. Advancing beyond
the previous effort, Efeu can generate combined software-hardware
drivers, with users freely selecting split points between components
and Efeu handling the interface generation. Evaluations on real devices
validate the generated I2C stacks. Compared with manually crafted
drivers, the generated stacks have a reasonable overhead in performance
and resource utilization, while featuring the assurance gained from
model checking.
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Chapter 1

Introduction

With increasing complexity in system design, modern computers offload
low-level management tasks to a dedicated processor, the Baseboard Manage-
ment Controller (BMC). Behind the scene, BMCs control critical parts of the
platform, including power distribution to the rest of the system. Needless
to say, BMCs act as a cornerstone for functional correctness and security
assurance of the whole system. Buggy or misconfigured BMCs can render
the system inoperative or even cause irreversible hardware damage.

Despite its importance, existing BMC firmware lacks assurance. As of this
writing, there are 221 BMC-related CVE records1. The research community is
actively working toward a trustworthy BMC stack. One notable approach is
building the firmware on top of formally verified operating systems (OSs)
like seL4 [3, 11, 19, 25].

While the highly-assured OS provides a robust base, several building blocks
are still missing toward a complete BMC firmware stack, notably device
drivers. Being unable to communicate with its peripherals essentially renders
a BMC useless. Unlike Linux-based BMC stacks like OpenBMC [5], available
device drivers on seL4 are yet limited.

While writing drivers is a routine task, writing drivers properly remains a
challenge. For instance, I2C is a protocol being widely adopted for communi-
cation between components on the baseboard, such as voltage regulators. De-
spite its significance, I2C is defined in ambiguous informal English-language
documents [26]. Various devices implement non-standard variations of the
protocol. For example, while the standard specifies the read flag as an indica-
tion of a read transaction, in which subsequent payloads are supplied by the
I2C responder, the AS5011 Hall Sensor [2] assigns a different meaning to the
flag. For that device, the read flag does not indicate a read I2C transaction,

1CVE record search (https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=BMC), ac-
cessed 2023-09-11.
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1. Introduction

but a read operation to its register. The first byte of the payload—register index,
is supplied by the controller rather than the responder. This protocol violates
the I2C standard at the transaction level. In addition to AS5011, there are a
handful of devices violating the standard at various levels [14].

To address these challenges, previous works [14, 15, 27] propose applying
model checking on an I2C driver specification and subsequently generating
drivers from it. While these studies demonstrate the feasibility of this ap-
proach, there remain several limitations preventing the generated drivers
from being useful in real-world applications.

Built upon the prior research, in this work, we introduce Efeu, a framework to
design drivers for model checking and software/hardware implementation.
Advancing beyond the previous effort, Efeu can generate combined software-
hardware I2C stacks. Users may choose the split point between software
and hardware, and even generate drivers that cross the software-hardware
boundary multiple times. Several limitations in the previous works are
addressed to improve the usability of the generated drivers. Furthermore, We
conduct tests on real-world platforms. Evaluations show that the generated
stacks function correctly with a reasonable overhead on performance and
resource utilization compared to manually crafted drivers, while featuring
the assurance from model checking.

While several studies have explored approaches of modeling and synthesiz-
ing drivers [4, 22, 23, 24, 28, 31], these works mainly focus on leveraging
the domain-specific languages (DSLs) to enforce abstractions and therefore
improve the driver reliability. In contrast, Efeu employs a C-like DSL, which
we believe is more user-friendly and lowers the barrier for using the frame-
work, while the driver assurance is achieved with model checking—extensive
search through the state space. Furthermore, to our knowledge, Efeu is the
first framework that enables flexible compositions of hardware and software
components into a single I2C stack.

The remainder of this thesis is organized as follows. Chapter 2 introduces
background material. In Chapter 3, we describe the design of Efeu, including
its programming model and languages. Chapter 4 further discusses the Efeu
compiler in detail. After implementing the system, we performed evaluations
on the I2C driver stack as a demonstration of Efeu’s functionalities. Chapter 5
presents the model checking results, followed by our evaluation with real-
world devices in Chapter 6. In Chapter 7, we discuss a few other aspects of
our system, including its further applications on BMC firmware and future
work. Finally, Chapter 8 offers our conclusions.

2



Chapter 2

Background

In this chapter, we present the background pertinent to this work. The
framework we present touches upon various areas in systems research and
engineering, involving electrical engineering, FPGA-based hardware design,
High-Level Synthesis (HLS), software development, and model checking.

2.1 I2C

I2C is a low-speed serial communication protocol [26]. It is widely adopted
for connecting microcontroller and peripheral devices in embedded systems.
The protocol operates over two wires, a serial data line (SDA) and a serial
clock line (SCL), both pulled up by external pull-up resistors. Connected
devices may only drive the lines low.

Designed with the principle of simplicity and versatility, I2C allows multiple
devices to communicate over the same bus. Each device is identified by a
7-bit address. An I2C device is either a controller (master) or a responder (slave).
Controllers initialize and control the data transfers. Only controllers drive
the clock line (except clock stretching discussed below), while responders
react accordingly.

2.1.1 Electrical Behavior and Symbols

I2C uses the two wires to encode bits (0 or 1) as well as the start and
stop signals of bus transactions. Figure 2.1 shows the encodings of the
four symbols on I2C buses. START and STOP symbols are produced by
controllers. BIT0 and 1 are generated either by controllers (during a write)
or by responders (during a read). To generate BIT0, the SDA is held low
when SCL is high. For BIT1, the device releases the bus (SDA is pulled
high externally). Devices should only sample the SDA line when SCL is

3



2. Background

high. Level transitions on SDA should only happen while SCL is low (except
START and STOP).

SCL

SDA

START STOP BIT0 BIT1

Figure 2.1: I2C symbols.

The I2C protocol defines multiple speeds. Standard Mode has a maximum
bit rate of 100 kbit/s. The Fast Mode supports up to 400 kbit/s. Addition-
ally, the standard defines Fast Mode Plus (1Mbit/s) and High Speed Mode
(3.4Mbit/s), which change many aspects of how the bus operates and are
therefore not covered in this work. Note that these speed modes define the
maximum speeds, not guaranteed rates. SCL is driven by controllers but
not responders (except clock stretching). Therefore, it is the controller that
decides the actual transmission rate. If a controller operates at a reduced
speed, compatible devices should still function.

2.1.2 Byte Format

Bytes are encoded with BIT 0 and 1 symbols and must consist of 8 bits.
The Most Significant Bit (MSB) is sent first. Each byte, if received by the
target device, shall be Acknowledged (ACK) after the last bit. In that clock
cycle, the controller releases the SDA line, and the target device, if exists and
acknowledges the byte, shall drive the SDA low. If the target device does
not exist on the bus, no device pulls down SDA, which results in SDA being
unaltered as a Not Acknowledged (NACK).

2.1.3 Transactions

Built on top of the byte format, the standard defines transactions. A transaction
is composed of one or more messages. Each message starts with a START
symbol, succeeded by a 7-bit target address plus a 1-bit read/write flag
(which makes up a byte and should be ACKed or NACKed). Subsequent to
this, the message payload is transmitted byte by byte. Each byte is ACKed
or NACKed respectively. A transaction concludes with a STOP symbol.
For transactions comprising only one message, it has the following content,
where N is the number of bytes in the payload.

START , 7-bit address + read/write bit , ACK/NACK , {payload byte ,
ACK/NACK} * N, STOP

4



2. Background

When a controller opts to send and/or receive multiple messages in a transac-
tion, it can proceed with the next message immediately after the one before,
without issuing a STOP. The STOP is only sent after the last message to con-
clude the whole transaction. From the second message onward, the START
symbols are called restart symbols. This approach keeps the bus busy for
the whole transaction. Given that each message contains its 7-bit address,
messages in one such transaction can be directed to different target devices.
In this scenario, a transaction is structured as follows, with M denoting the
number of messages within the transaction.

{START , 7-bit address + read/write bit , ACK/NACK , {payload byte ,
ACK/NACK} * N} * M, STOP

2.1.4 Clock Stretching

Typically, only controllers can drive SCL. However, when a responder fails to
prepare data for a transmission in time, it may signal the controller by clock
stretching. Clock stretching pauses the I2C transaction by holding the SCL
low. In essence, it pauses the clock and the controller can no longer raise
SCL. Devices on the bus should sense the stretching and remain in standby
mode until SCL is released.

2.1.5 Arbitration

When multiple controllers are connected to the bus and initiate transactions
simultaneously, arbitration determines which transaction wins. SCL and SDA
are pull-up lines. If both BIT 0 and BIT 1 are transmitted at the same time, the
bus registers BIT 0. Devices, while sending bits on SDA, also read back the
level. Transmitting a BIT 0 can never fail given the electrical operations are
applied correctly. Transmitting a BIT 1 may fail, if another device is sending
BIT 0 at the same time, resulting in SDA being pulled down. Here, the device
sending BIT 1 loses the arbitration and should terminate its transaction. Prior
bits sent do not interfere with the other message since they have exactly
the same bits, otherwise the conflict would arise earlier. The other device is
unaware of the arbitration process, as all its symbols are transmitted without
issues. In a rare case where two messages are exactly identical, they are both
transmitted correctly, but the target device receives a single copy.

Arbitration is relevant only if multiple controllers are present in the system.
Responders are not involved in the arbitration process. If there is a single
controller on the bus, we can safely ignore the arbitration process (there are
exceptions like SMBus ARA [9], where arbitration happens among responders
that pull down the alert line).

5



2. Background

2.1.6 Non-Compliant Devices

Several devices violate the I2C standard. Humbel’s work [14] identifies and
elaborates a few real-world devices that are not compliant to the standard. In
this subsection, we revisit one such device that is pertinent to our evaluation.

AS5011 Hall Sensor In the I2C standard, the bit succeeding the 7-bit address
indicates whether the transaction is a read or a write. In a read transaction,
the subsequent bytes should be supplied by the responder. However, the
AS5011 Hall Sensor [2] violates this. The protocol implemented by this sensor
uses the read/write bit to indicate read/write to the device register. In either
case, the first byte of the payload is the register index being always supplied
by the controller. Only the data that follows respect the read/write bit.

This device violates the standard Transaction layer as a read transaction
incorporates a byte to write. A specialized Transaction layer is written for it,
but the standard layers below are reused.

2.2 SPIN and Promela

SPIN is a software tool that enables the formal verification of concurrent
and distributed systems. It was first developed in the 1980s and has since
become a widely used tool for software verification. It works by taking a
finite-state model of a system and exhaustively exploring all possible states
of the model to check for the presence (or absence) of errors or violations of
specified properties, such as common problems in concurrent systems like
deadlocks and livelocks, as well as properties specified by the user.

Promela, short for Protocol/Process Meta Language, is the modeling language
used by SPIN. It allows the user to describe a system’s behavior as a set
of processes running concurrently and communicating through message
passing. Processes can be created dynamically. Message passing can be
synchronous or asynchronous.

One of the powerful features of Promela/SPIN is its capability to model
non-deterministic behaviors with ease. For example, Figure 2.2 shows an
example of a non-deterministic do loop in Promela. When this inline function
is invoked, it non-deterministically outputs 0 to infinite SYM_STRETCHs to the
channel. This feature allows modeling large state spaces with relatively low
effort rather than specifying all combinations.

SPIN/Promela is used for model checking the I2C stack in the previous
works [14, 15, 27] as well as this work. We discuss the I2C stack and the
Promela verifiers being used in Section 2.3, and our verification result in
Chapter 5.

6



2. Background

1 mtype = {SYM_STRETCH };
2
3 chan channel = [0] of {mtype};
4
5 inline stretch (){
6 do
7 :: channel ! SYM_STRETCH;
8 :: break;
9 od

10 }

Figure 2.2: An example of non-deterministic do loop in Promela.

2.2.1 Non-Progress Cycle Check

Non-progress cycle (NPC) checks are used to detect livelocks in the system
being modeled. In SPIN, NPC check [10] requires the user to mark the
desired activities of the system in the process with a progress label. With
the check enabled when compiling the verifier, SPIN tries to find a cycle
that does not involve the progress label. If no such cycle exists, the system
definitely makes progress eventually.

2.3 Model-Checked I2C Stack

As discussed in Section 2.1, the I2C protocol, while widely adopted, is
plagued with the presence of numerous incompatible devices that violate
the specification at various abstraction levels. To simplify the development
of highly assured drivers, Humbel et al.propose a framework [14, 15] that
enables rapid modeling of non-compliant devices, applying model checking,
and generating drivers. Specifications are written in a Domain-Specific
Language (DSL), from which both Promela code and C code are generated.
The Promela code is used for model checking with SPIN. The C code is used
to construct software drivers.

Using the framework, the I2C stack is modeled in layers. Layers can be reused
to model non-compliant devices by simply replacing the standard-violating
layers while keeping the others unchanged. To demonstrate the real-world
usage of the framework, the work focuses on modeling an EEPROM driver
stack.

Built upon the framework, Störzbach’s work [27] extends it by introducing a
backend to generate hardware drivers. It takes the same I2C specification and
generates VHDL (a hardware description language). The hardware driver
can be implemented with EDA tools like Xilinx Vivado and run on FPGAs
(Field Programmable Gate Arrays).

7



2. Background

This work, as an extension and generalization of the previous works, focuses
on the same I2C stack of the EEPROM driver. In this section, we discuss the
I2C stack and its specification in the previous works.

2.3.1 Layered I2C Specifications

In previous works [14, 15, 27], the specification models both a I2C controller
stack and a I2C -based EEPROM responder stack. Both stacks consist of the
layers described below. In this work, while we use both stacks for model
checking and software simulators, our primary emphasis is the the controller
stack. We use it as an example to illustrate the framework’s efficacy in model-
ing and implementing drivers for real-world applications. Consequently, we
revisit the controller stack in detail below, while omitting the responder stack
for brevity. To see the complete specification of the responder stack, readers
are directed to the previous works [14, 15, 27]. Alternatively, Appendix A
shows the complete specification for both stacks using ESI, the new topology
specification language in our framework (discussed in Section 3.5).

We describe layers from the lowest-level layer—the Electrical layer, to the
highest-level layer—the World layer. Each layer is described with one or more
paragraphs below. Between these paragraphs, we use code blocks to describe
the interface in between. ↑ and ↓ denote the communication direction. For
example, between Electrical Layer and Symbol Layer below, the ↑ code block
in between specifies the interface from Symbol to Electrical, and vice versa.

Electrical Layer The lowest layer models the I2C wires: SCL and SDA. It
describes how levels on the same bus are combined into the next bus status.
For example, given that SCL and SDA are pulled-up wires, a 0 (LOW) and a
1 (HIGH) from two devices to one of the wires results in 0 (LOW) as the next
status.

↑

• SCL to send: 0, 1.

• SDA to send: 0, 1.

↑

↓

• Actual SCL on the bus: 0, 1.

• Actual SDA on the bus: 0, 1.

↓

Symbol Layer This layer is responsible for conversion between I2C symbols
(START, STOP, BIT0, and BIT1) and electrical levels. In addition to the
symbols defined by the I2C standard, two more symbols, IDLE and STRETCH,
are defined. IDLE puts the bus in the idle state for one more cycle. STRETCH
stretches SCL for one cycle.

8



2. Background

↑

• Symbol to send: IDLE, START,
STOP, BIT0, BIT1, STRETCH.

↑

↓

• Symbol received: IDLE, START,
STOP, BIT0, BIT1, STRETCH.

↓

Byte Layer The I2C protocol is byte-oriented (7-bit address + r/w bit also
forms a byte). This layer handles encoding/decoding bytes to/from bits as
well as ACK/NACK of each byte.

↑

• Action to Byte layer:
BYTE_ACT_START,
BYTE_ACT_STOP,
BYTE_ACT_WRITE,
BYTE_ACT_READ,
BYTE_ACT_ACK,
BYTE_ACT_NACK,
BYTE_ACT_IDLE.

• Byte to send (only valid for
BYTE_ACT_WRITE).

↑

↓

• Result from Byte layer:
BYTE_RES_OK,
BYTE_RES_ACK,
BYTE_RES_NACK,
BYTE_RES_READ,
BYTE_RES_START,
BYTE_RES_STOP,
BYTE_RES_IDLE,
BYTE_RES_ARB_LOSS.

• Byte received (only valid for
BYTE_RES_READ).

↓

Transaction Layer The Transaction layer encodes messages into bytes and
decodes bytes into messages. A message starts with a START symbol. How-
ever, it does not necessarily end with a STOP symbol, but is followed by a
restart message. The transaction only terminates with a STOP succeeding the
final message. Consequently, available actions to the Transaction layer not
only include TR_ACT_READ and TR_ACT_WRITE that automatically send
the heading START, but also a TR_ACT_STOP action that sends the STOP
symbol. The payload of each message may have variable lengths, but the
interface must be in a fixed size. The specification in previous works defines
an array of size 16 to pass the payload as well as a length field. We stick to
the same configuration.

9



2. Background

↑

• Action to Transaction layer:
TR_ACT_WRITE,
TR_ACT_READ,
TR_ACT_STOP,
TR_ACT_IDLE.

• 7-bit address.

• Payload length.

• Payload data: 16 bytes array.

↑

↓

• Result from Transaction layer:
TR_RES_OK,
TR_RES_FAIL,
TR_RES_NACK.

• Payload length.

• Payload data: 16 bytes array.

↓

EepDriver Layer At this layer, we implement the byte-addressable EEPROM
(Electrically Erasable Programmable Read-Only Memory) communication
protocol [20]. The test device is a Microchip 24AA512. To read data from
EEPROM, the two-byte data address is first written on the I2C bus. Subse-
quently, bytes are read one by one. The address is automatically incremented
by one after every byte by the EEPROM. Sending the data address (not the
I2C address of the EEPROM) and reading the data should happen in one
transaction. Similarly, to write data to the EEPROM, the address is written
on the I2C bus, followed by bytes to write. The interfaces between this layer
and the upper layer are similar to those with the Transaction layer, except
that the result from EepDriver does not contain the payload length, since the
higher level should know the number of bytes read or written.

↑

• Action to EepDriver layer:
EEP_ACT_WRITE,
EEP_ACT_READ.

• 7-bit address.

• Payload length.

• Payload data: 16 bytes array.

↑

↓

• Result from EepDriver layer:
EEP_RES_IDLE,
EEP_RES_OK,
EEP_RES_FAIL,
EEP_RES_NACK.

• Payload data: 16 bytes array.

↓

World Layer The World layer is the highest layer in the stack. In the original
works, this layer performs performs a fixed sequence of actions indefinitely.
In the new framework we present, this layer can not only perform fixed
actions as before, but can also serve as an entry point for user-specified
inputs, depending on the configuration.

10



2. Background

2.3.2 DSL

The DSL in the previous works [14, 15, 27] has a syntax close to C, but is
neither a subset nor a superset. In this subsection, we discuss the impor-
tant features of the DSL that are relevant to this work. For the complete
descriptions of the DSL, readers are directed to the original works.

1 proc (int , int) UpperLayer (int valueFromLayer) { /* some code
*/ }

2
3 proc (int , int , int , int) Layer (int valueFromLowerLayer ,
4 int anotherValueFromLowerLayer) {
5 int a;
6 int b;
7 /* ... */
8
9 yield (1, 2, 3, 4);

10 /* valueFromLowerLayer and anotherValueFromLowerLayer are
changed */

11
12 (a, b) = call (42);
13 }
14
15 proc (int) LowerLayer (int valueFromEvenLowerLayer) { /*

LowerLayer */ }
16
17 system {
18 layers [Bottom , Middle , Top];
19 device Dev {
20 Bottom : LowerLayer;
21 Middle : Layer;
22 Top : UpperLayer;
23 };
24 }

Figure 2.3: Example of the original DSL.

Layers (Processes) Layers are defined with coroutines (processes). The
syntax is similar to C functions with a few changes. Firstly, instead of
returning a single value, a layer can "return" a tuple of values. More precisely,
those are values that are yielded (discussed below) to the lower layer. Unlike
C functions, layers are ever-running processes that never "return". Similarly,
the function parameters are values passed from the lower layer to the upper
layers. For example, in Figure 2.3, on every communication, Layer passes
four integers to its lower layer and receives two integers in return. Each layer
implicitly get a set of values passed from the lower layer on entry.
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yield The yield operation communicates with the lower layer from the
current layer. As its name suggests, it passes values to the lower layer,
waits for the lower layer to finish processing, gets back values, and resumes
the execution right after the yield. Note that the values of the "function
arguments" of the current layer (valFromDownstream above) are changed after
yield, although it seems like the execution just continues. The usage of yield
is determined given the layer definition. Line 9 in Figure 2.3 shows a valid
yield operation.

call The call operation communicates with the upper layer from the cur-
rent layer. The values to the upper layer are passed as arguments, and the
values yielded by the upper level is assigned to local variables. Line 12 in
Figure 2.3 shows a valid call operation. Notice that the usage of call is
not determined by the signature of the current layer, but that of the upper
layer. Only after knowing what the upper layer is can the usage of call be
determined. An interface mismatch results in a compile time error [15].

Assembling Layers As shown in Line 17 to 24 in Figure 2.3, layers are
assembled in the system block. layers defines the names of layers in order.
device defines a new device by specifying the process for each layer.

Types The original DSL only allows 32-bit signed integer (int) and fixed-
size int array intarr with size 16.

2.3.3 Verifiers

To perform model checking on the I2C stack, in addition to the Promela code
generated from the DSL, extra Promela code written manually is needed.

The previous works by Humbel [14, 15] include several verifiers to check
various functionalities of the I2C stack. An important part is equivalence
checking. Each of those verifiers assembles both a controller and a responder
up to a certain layer. The composition is then driven with all valid inputs
that can be emitted by the upper layers. The same inputs are fed into an
abstract machine that specifies the expected output for such a composition.
If the outputs diverge, the equivalence checking fails. Figure 2.4 illustrates
the architecture of a verifier that verifies layers up to the Byte layers.

Be careful about the claims made by the verifiers. For the verifier shown
in Figure 2.4, it does not claim either the controller Byte and Symbol or the
responder Byte and Symbol conforming to the spec. Instead, it claims the
composition conforms to the spec. Consider the following case: if the encoding
of the START symbol is changed in the Symbol layers of both the controller
and the responder but still agree with each other, the composition still aligns
with the spec from the viewpoint of the upper level—the Transaction layer.
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Transaction Valid
(All Valid Inputs from Transaction Layers to Byte Layers)

Controller Byte

Controller Symbol

Responder Byte

Responder Symbol Byte Abs
(Abstract Machine)

= ?

= ?

Electrical Bus

Unit Under Test

Verifier

Controller Transaction to Byte

Controller Byte to Transaction

Responder Transaction to Byte

Responder Byte to Transaction

Figure 2.4: Verifier for equivalence checking on byte layers.

In the evaluation of the framework discussed in this work, we use the
equivalence checking verifiers up to Symbol, Byte, Transaction, and EepDriver.
There are a few verifiers that are not maintained in the codebase of the
previous works. Due to the time constraint, we do not port them. Porting
them would be future work.

2.3.4 Generating Software Drivers

Humbel’s compiler [14, 15] translates the DSL to C code. Given the similar
syntax of the DSL as C, the majority of these translations are direct and intu-
itive. We discuss the most notable parts here. For the complete descriptions
of the translation rules, readers are directed to the original works. Figure 2.5
shows the generated C code from the DSL example in Figure 2.3.

Processes to C Functions Data fields originating from the downstream
layer are translated into passed-by-value function parameters. Conversely,
fields directed towards the downstream layer (i.e. values being yielded) are
translated into pass-by-reference parameters. Line 10 and Lines 14–16 in
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Figure 2.5 show the translated C function signatures from UpperLayer and
Layer in Figure 2.3. Note that when a resulting C function is called for the
first time, function arguments carry values from the downstream layer. This
preserves the semantics that layer get a set of values from the lower layer on
entry.

calls to C Function Calls Each call in the DSL is translated to a C func-
tion call. The parameters are supplied as passed-by-value arguments. The
variables accepting the returned values are supplied as pass-by-reference
arguments. It aligns with the C function signature being invoked. Line 34 in
Figure 2.5 shows the translated C function call from Line 12 in Figure 2.3.

yields to Continuations Each yield in the DSL is translated into a continu-
ation in the resulting C function. Continuations are a technique to create the
illusion that execution resumes at a point, semantically similar to function
calls. However, instead of creating a stack frame, it tears down a layer of
stack frame (return). The process involves the following steps.

1. Assign values to output variables by dereferencing the return parame-
ters (Line 26–29 in Figure 2.5).

2. Set a unique (in the current function) identifier to the global variable
mapos (Line 27)

3. Return (Line 28).

4. Insert a label right after the return (Line 29).

5. In the big switch at the beginning of the function, on that mapos value,
jump to the label (Line 17–19).

Essentially, this approach saves the instruction pointer right after the yield
to static region but uses labels and goto constructions in C.

Local Variables to (Global) Static Variables Since yields involve re-entering
the function, all on-stack local variables must be transformed to static global
variables to preserve their values across function calls. With the original
compiler, the procedure is done by including those variables in the global
data structure (Line 3–4 in Figure 2.5).

2.3.5 Generating Hardware Drivers

Störzbach’s work [27] extends Humbel’s work [14, 15] by adding a backend to
the compiler that generates VHDL source code for hardware implementation.
The translation happens at the source code level. We discuss the relevant
constructions of this backend in this subsection. For the complete translation
rules, please refer to Störzbach’s work [27].
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1 static struct {
2 struct {
3 int a;
4 int b;
5 int mapos;
6 } Dev_Middle;
7 /* Dev_Top and Dev_Bottom */
8 } global;
9

10 void Dev_Top(int valueFromLayer , int *out_0 , int *out_1) {
11 /* some code */
12 }
13
14 void Dev_Middle(int valueFromLowerLayer ,
15 int anotherValueFromLowerLayer ,
16 int *out_0 , int *out_1 , int *out_2 , int *out_3) {
17 switch (global.Dev_Middle.mapos) {
18 case 0:
19 goto continuation_0;
20 case 1:
21 goto continuation_1;
22 };
23 continuation_0:
24 /* ... */
25
26 *out_0 = 1;
27 *out_1 = 2;
28 *out_2 = 3;
29 *out_3 = 4;
30 global.Dev_Middle.mapos = 1;
31 return;
32 continuation_1:
33
34 Dev_Top (42, &global.Dev_Middle.a, &global.Dev_Middle.b);
35 }
36
37 /* Dev_Bottom */

Figure 2.5: Generated C code from the DSL example in Figure 2.3.

Types Signed 32-bit integer and 16-slot fixed-size array are the only two
types defined by the DSL. The former is mapped to signed(31 downto
0) in VHDL. The latter is mapped to a defined type int_array, which is
array(15 downto 0)of signed(31 downto 0).

Interfaces Each layer in the DSL is translated to a VHDL entity. Com-
munications between layers adopt the handshaking protocol (discussed in
Subsection 2.5.1). For each communication channel from one layer to another,
there are one or several data ports plus a valid pin and a ready pin. Each
layer is connected to an upper layer and a lower layer, and connections are
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bidirectional. Therefore, there are four sets of data plus valid and ready ports
per layer. In addition, each entity has a clock input and an active-low reset
input.

VHDL Processes for Sequential Code The main part of the VHDL entity
for the layer is a VHDL process. Variables in the DSL are translated to process
variables. Sequential code in the DSL are translated to sequential assignments
in VHDL (except input/output of yields and calls). Arithmetic operations
as well as control flow operators allowed in the DSL all have equivalences in
VHDL.

Finite State Machines Each label in the DSL, including the ones inserted
by the compiler for the entry block and yields/calls [27], are translated
to a state in VHDL. A goto statement becomes an assignment to the state
variable. On the next cycle, the state machine executes logic in the target
state, simulating the goto process.

State Transfer of yield In the state machine of every layer, three states
dedicated for yields are inserted. Figure 2.6 shows the state transfer of a
yield operation. All yield share the same intermediate states READY_WAIT,
ARG_WAIT and RESET_READY. Therefore, the overhead of yield in terms of the
number of additional states is constant for every layer. However, to correctly
transfer to the next state after the yield, the next state is stored in a variable
next_state and RESET_READY transfers on this variable. This makes the state
transfer non-deterministic at compile time and prevent some optimization
like Xilinx Vivado FSM auto state encoding.

State Transfer of call State transfer of call is similar to that of yield but
reorganized, as shown in Figure 2.7. The output valid signal is asserted
in the same cycle as the output data is assigned (more closely conforms to
the handshaking protocol than that of yield). Lowering the ready signal is
moved to the beginning of Next State.

2.4 LLVM and Clang

LLVM is a state-of-the-art open-source compiler infrastructure project that
provides a comprehensive and modular suite of compiler and toolchain tech-
nologies. The LLVM project aims to provide a set of reusable and language-
independent software tools that can be used to develop high-performance
compilers and dynamic programming language implementations. LLVM’s ar-
chitecture is designed to promote experimentation, research, and innovation
in the field of compilers and programming languages, while also offering a
high degree of flexibility, portability, and modularity.
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READY_WAIT

ARG_WAIT

RESET_READY

Current
State

Next State

out_data <= value
next_state := ...

other_layer_ready == 0

other_layer_ready == 1

out_valid <= 1

out_valid <= 0

in_valid == 1

in_valid == 0

this_layer_ready <= 0

this_layer_ready <= 1
Non-deterministic
Transfer based on

next_state

Figure 2.6: State transfer (Mealy) for a yield in the previous work [27]. State and signal
names are simplified. The dashed line shows a non-deterministic state transfer.

Clang is a C, C++, and Objective-C compiler built on top of LLVM. It is
widely adopted by developers and organizations seeking to develop high-
performance software systems. It follows the same modular design as LLVM
and targets high reusability.

In this project, we build Efeu’s compiler based on the LLVM/Clang frame-
work. We intend to reuse components from LLVM/Clang for robustness and
extensibility.

2.4.1 LLVM/Clang Pipeline

Inside Clang, the source code undergoes a sequence of stages to be trans-
formed into executable machine code [29]. There is a concise breakdown of
the process:

1. Source Code to Clang AST (Abstract Syntax Tree). The first step in the
Clang pipeline is the conversion of source code into AST. The source
code is preprocessed to remove preprocessor derivatives. And then, the
code is lexed and parsed into Clang AST. The AST captures the rich
syntactic and semantic information about the source code, including
types, variable names, control flows, and other structures. One can
refer back to text positions in the source code from the nodes in the
AST.
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READY_WAIT

OUT_WAIT

Current
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out_data <= value
out_valid <= 1

next_state := ...
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in_valid == 1

in_valid == 0

this_layer_ready <= 0
(code after the call)
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Non-deterministic
Transfer based on

next_state

Figure 2.7: State transfer (Mealy) for a call in the previous work [27]. State and signal names
are simplified. The dashed line shows a non-deterministic state transfer.

2. Clang AST to LLVM IR (Intermediate Representation). Once the AST
is generated, it is then transformed into LLVM Intermediate Represen-
tation (IR). LLVM IR is a low-level, typed, and platform-independent
representation. It is designed to be easily manipulated by the LLVM
optimization passes. High-level control flows are unified into labels
and jumps at this level. Names of variables, functions, etc. can be
mangled.

3. LLVM IR to Assembly. After the LLVM IR is optionally optimized, it
is lowered to target-specific assembly languages. The LLVM backend,
tailored for the target architecture, is responsible for this conversion.

In addition to the stages described above, Clang also includes various com-
ponents like linker and runtime supports. We omit them as they are not
relevant to the work we present here.

2.4.2 Build System

LLVM/Clang uses the CMake build system. While LLVM-based projects
should use CMake, there are still multiple ways to architect LLVM-based
projects. In the talk "Architecting out-of-tree LLVM projects using cmake" at
the 2021 LLVM Developers Meeting [21], three main architecture options for
LLVM-based projects were discussed:

• In-tree source monolithic build: In this architecture, the project’s source
code is placed within the LLVM source tree and built as part of the

18



2. Background

LLVM monolithic build. This structure can be useful for small projects
or ones that require deep integration with LLVM, but it can also lead
to maintainability issues as changes to the project can impact the larger
LLVM codebase.

• Out-of-tree source monolithic build: In this architecture, the project’s
source code is located outside the LLVM source tree, but is still built
as part of a monolithic build system. LLVM source tree is checked out
as a Git submodule or with a checkout script. This structure provides
better maintainability compared to in-tree builds, but still requires full
build of the used LLVM components.

• Out-of-tree source component build: In this architecture, the project’s
source code is located outside the LLVM source tree and is built as
a separate project using CMake. Typically LLVM is located using
the require derivative in CMake. This structure allows the reuse of
pre-built components of LLVM and is therefore the fastest in compile
time. However, this architecture imposes limitations on the project.
For example, there is no known way to write an out-of-tree LLVM
backend1,2.

In this work, we use the out-of-tree architecture. Rather than introducing
passes or components to be reused by many existing LLVM tools, our focus is
on constructing tools tailored to our applications. The out-of-tree architecture
offers the advantage of leveraging LLVM components as libraries while
keeping the codebase lightweight.

2.5 Hardware Description Languages and High-Level
Synthesis

Hardware Description Languages (HDLs) are specialized languages used
to define and simulate digital circuits and systems. Primary HDLs include
VHDL, Verilog and its successor SystemVerilog. These languages are in-
strumental in designing, simulating, and verifying digital circuits. FPGAs,
being reconfigurable hardware, rely heavily on HDLs for their design and
functional validation.

HDLs are compiled to bitstreams by Electronic Design Automation (EDA)
tools, which is then loaded onto FPGAs. In this work, we use the Xilinx
Vivado FPGA tool suite (version 2020.1) as the EDA tool for FPGA imple-
mentation and evaluation. The version supports mixed HDLs for design

1https://discourse.llvm.org/t/support-for-out-of-tree-targets/61441, ac-
cessed 2023-04-26.

2https://discourse.llvm.org/t/support-for-out-of-tree-backend-passes/51321,
accessed 2023-04-26.
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and simulation. However, only IP blocks with the top-level design written
in VHDL or Verilog, but not in SystemVerilog, can be integrated into block
designs. This affects some design decisions of ESMC.

EDA tools perform a series of optimizations when synthesizing and imple-
menting the design. For instance, wires and registers that are never used
are eliminated. An optimization in Xilinx Vivado that is worth mentioning
is the Vivado Finite State Machine (FSM) auto state encoding3, since FSMs
are pervasively used by ESMC when encoding the specification as hardware
drivers. When the FSM auto state encoding is enabled and Vivado detects
FSM structures in the HDL code, it can choose a suitable state encoding to
accommodate the optimization goals. The available encoding methods in-
clude one-hot, grey state, Johnson, and sequential. The default optimization
goal in Vivado is timing. Depending on specific conditions, Vivado may not
detect the FSM or may decide not to perform the optimization. For example,
when there exist non-static state transactions, the optimization is disabled4.

HDLs describe hardware at a low level. In contrast, High-Level Synthesis
(HLS) is a process that translates high-level programming languages, such
as C, C++, or SystemC, into HDLs. HLS enables hardware designers to
describe functionality at a higher level of abstraction, thereby accelerating
the design and verification process. Over the years, a number of HLS tools
have emerged, ranging from commercial tools, such as Xilinx Vivado HLS, to
academic solutions like gcc2verilog [16].

2.5.1 Ready/Valid Handshaking Protocol

The ready/valid handshaking is a flexible and lightweight protocol to connect
modules. It is widely adopted in hardware design, such as the AMBI AXI4
protocol [1]. For a unidirectional communication channel, the sender outputs
a valid signal and data signals, registered by the receiver. The receiver outputs
a ready signal that is registered by the sender. The two components have to
be in the same clock domain. The protocol is defined as follows, assuming
signals are asserted on the rising edges.

• In a cycle where valid is high, values on the data ports are valid.

• In a cycle where ready is high, the receiver is able to receive data in
that cycle.

• In a cycle where both valid and ready is high, one data transfer is
completed.

3https://docs.xilinx.com/r/en-US/ug901-vivado-synthesis/
Auto-State-Encoding, accessed 2023-09-09.

4https://support.xilinx.com/s/article/60104?language=en_US, accessed 2023-09-
09.
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Upon a cycle where both valid and ready are asserted high, the sender shall
lower the valid signal unless there is an immediate need to transmit more
data on the next cycle. Similarly, the receiver shall lower the ready pin unless
it can immediately accept more data on the next cycle.

For detailed descriptions and examples of the protocol, readers are kindly
directed to the AXI protocol introduction manual [1].

2.6 Enzian and Enzian BMC

The I2C communication protocol has significant application in the realm of
computer platform management. Modern computers are complex. Boot-
strapping a system and maintaining its proper operational state involves
non-trivial work. Consequently, modern platforms typically incorporate a
dedicated processing unit, the Baseboard Management Controller (BMC), which
handles system initialization, power control, state monitoring, and other
basic functionalities [25]. Some BMCs also offer advanced administration
capabilities, such as remote control over the network.

While researchers typically have no access to server BMCs, the Enzian
project [3] in the Systems Group at ETH Zurich is building an experimental
server-class computer for research. Enzian currently includes a BMC with
a Xilinx Zynq-7000 System-on-Chip (SoC). The next-generation BMC is an
Enclustra Mercury XU5 module [8] that features an ARMv8-based Zynq
UltraScale+ MPSoC (ZynqMP) [32]. The Enzian BMC widely uses the I2C
protocol to interact with peripherals, such as the fan controller. Towards the
way of building a trustworthy BMC firmware stack, verified I2C drivers are
indispensable parts.

Evaluation of the framework we present in this work is performed on the
new BMC module. At the heart of the module is a Zynq UltraScale+ MPSoC
(ZynqMP) [32] that features quad-core ARM Cortex-A53 processors as the
Application Processing Unit (APU) and a 16nm FPGA (Programming Logic,
PL).

The currently deployed Enzian BMCs run OpenBMC [5], a Linux distribution
designed for baseboard management. This software stack, although well-
tested, does not provide as high assurance as formal verification. The next-
generation Enzian BMC firmware is built around seL4 [13, 19], a microkernel
that has been formally proven to be functionally correct and secure on
specific platforms. Previous work at the Systems Group implements Linux
virtualization on seL4 on the ARMv8 platform as a step toward trustworthy
BMC firmware. The untrusted components can be put in the VMs for
strong isolation, while the trusted parts can be implemented as native seL4
applications for better performance.
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Chapter 3

Design

In this chapter, we introduce the design of Efeu. We start by discussing the
limitations of the previous works by Humbel [14, 15] and Störzbach [27] in
Section 3.1. Section 3.2 presents the design principles of Efeu, which aim to
address these challenges and provide enhanced features. This is followed
by an overview of the Efeu programming model in Section 3.3 and the new
DSLs for Efeu in Section 3.4 and Section 3.5.

3.1 Limitations of the Previous Frameworks

The previous works [14, 15, 27] demonstrate the feasibility of model checking
the I2C stack (including non-compliant devices) and generating software and
hardware drivers from the specification. Nevertheless, to generate drivers
to be used in real-world applications, there are yet some limitations in these
works.

Fixed Bottom-Up Architecture The original I2C stack specification was
designed with a specific direction in mind: the generated C code is intended
to be invoked from the lowest layer—the Electrical layer. Figure 3.1 shows a
boilerplate code that acts as the Electrical layer and calls into its upper layer.
Each of these calls propagates upwards and returns eventually, carrying the
SCL and SDA levels to be set on the next cycle back to the Electrical layer.

Consider a simple program operating the I2C bus. Given the current archi-
tecture, this program must spawn a different thread to run an infinite loop
akin to the one in Figure 3.1. The thread needs to synchronize with the main
thread for I2C operations. This approach deviates from the conventional
method of writing or using drivers. Software drivers usually adopt a top-
down approach: they receive high-level instructions, execute operations, and
return the results.
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1 void controller_Symbol(int scl , int sda , int *out_scl , int
*out_sda);

2
3 int main() {
4 /* some more code */
5
6 int scl , sda;
7 while (1) {
8 i2c_recv (&scl , &sda);
9 controller_Symbol(scl , sda , &scl , &sda);

10 i2c_send(scl , sda);
11 }
12 }

Figure 3.1: Original boilerplate code that interacts with bit-banging I2C driver. This main
function acts as the Electrical layer. It calls into its upper layer, the Symbol layer.

Dead-End Top Layer In the original specification, the top layer of the
controller stack—the World layer, continuously executes a predetermined
sequence of operations, as shown in Figure 3.2.

1 proc (int /* action */, int /* addr */, int /* data_len */,
intarr /* data */) EepController(int res , intarr res_data) {

2 intarr data;
3 assert(res == ME_RES_IDLE);
4
5 write:
6 data [0] = 32;
7 data [1] = 33;
8 yield (ME_ACT_WRITE_EEPROM , 6, 2, data);
9 assert(res == ME_RES_OK);

10
11 read:
12 yield (ME_ACT_READ_EEPROM , 6, 2, data);
13 assert(res == ME_RES_OK);
14 assert(res_data [0] == 32);
15 assert(res_data [1] == 33);
16
17 goto write;
18 }

Figure 3.2: Original top layer of controller that executes a predetermined sequence of opera-
tions indefinitely. The proc is named differently in this piece of code but corresponds to the
World layer describes in [15] and [14].

While the generated drivers work for testing purpose, real applications
require drivers that can accept inputs from outside. Although it is possible
to use methods like scanf in the World layer, or acquire data through other
approaches, a more refined solution is preferable.
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DSL Usability From the usability standpoint, the original DSL used to
specify the stack has several limitations. The DSL is similar to C, yet it is
neither a subset nor a superset. Unlike C, which has a complete ecosystem of
tools like code highlighting, formatting, and compilers with comprehensive
diagnosis, the DSL is only equipped with a basic compiler. In addition,
as highlighted in Subsection 2.3.2, the usage of call is unclear from the
definition of the current layer but instead determined by the upper layer’s
signature. The yield usages can also be perplexing, as those "function
parameters" that appear to be static can change after the call.

Drivers are Solely Software or Hardware Humbel’s compiler [14, 15]
compiles the whole stack into C code for software drivers. Störzbach’s
extension [27] compiles the entire stack into VHDL code for hardware drivers.
There is no way to generate software-hardware combined stacks.

3.2 Design Principles of Efeu

In this work, we propose an approach to migrate the issues in the previous
works [14, 15, 27] mentioned above. At a high level, the core idea is to unify
call and yield to a generic talk function, and let the compiler decide the
implementation. This change enables a range of new opportunities.

Generating Both Bottom-Up and Top-Down Software Drivers In Efeu,
specifications are no longer limited to the bottom-up architecture. By dele-
gating the decision of actual implementations of the talk function calls to
the compiler, the user can generate both top-down and bottom-up drivers
from the same stack, merely by changing a command-line option.

Open Interfaces at Endpoints Unlike the previous works that have a dead-
end top layer, drivers generated by Efeu have open and well-defined interfaces
at endpoints. For instance, in a top-down software driver generated by Efeu,
the top level is a callable C function. The entire stack can be seamlessly
encapsulated into a library for programs to invoke.

Creating Complex Layer Topologies Layers connecting to each other form
a graph. In the previous framework, using the yield and call operations,
the user can only construct linked-list-like structures, in which each layer is
connected to two adjacent layers (except the two endpoints). While this suf-
fices for I2C drivers, Efeu offers greater flexibility in layer assembly, enabling
the creation of more complex topologies. Efeu allows creating a network of
layers.
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Generating Combined Software-Hardware Drivers with One Click Efeu
empowers users to produce integrated software-hardware drivers. The split
point between software and hardware components can be configured with
command-line options passed to the compiler. Moreover, Efeu supports
creating drivers that cross the software-hardware boundary multiple times.

The DSL and the compiler are also completely redesigned, with the following
goals in mind.

Usability for End Users The new DSL is a strict subset of C, which means
existing tools like code highlighters and formatters work for the DSL seam-
lessly. Leveraging the existing frontend of Clang/LLVM, the new compiler
can perform type checking as strong as C and report errors and/or warnings
in a user-friendly way. Most checks for code style in Clang are retained. The
syntax of the talk function is designed to avoid confusion. Furthermore, the
new DSL supports C preprocessor derivatives, enabling flexible and modular
designs.

Ease of Integration with Boilerplate Code or Existing Hardware Design
The new compiler can translate system specifications into C or HDL code
without user intervention. However, in many real-world applications, the
generated code needs to be integrated with boilerplate code (for software
drivers) or pre-existing hardware design (for hardware drivers). The DSL and
the compiler are designed with this integration in mind. For software drivers,
the end user can even incorporate native C code (out of the DSL)’s scope)
directly within the specification. For hardware drivers, the generated code
can be easily encapsulated into IP blocks in EDA tools with little manual
effort.

Last but not least, Efeu retains the model checking capability of the original
frameworks. The compiler is able to generate Promela code for the SPIN
model checker. Efeu effectively encompasses and extends the capabilities of
the earlier work.

3.3 Programming Model

Layers (Nodes) Efeu inherits the concept of layers from the previous works.
Layers are processes (coroutines) running indefinitely. At its core, a layer
operates as a Finite State Machine (FSM). A single layer can be connected to
one or more layers. In this sense, layers are better named as nodes. However,
for the sake of consistency, we still use the word "layers" in the remaining
part of this work. Any pair of layers can be connected or disconnected, but
not connected multiple times.
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Interface An interface is a unidirectional communication channel from one
layer to another. Connections between layers are always bidirectional. As a
result, two connected layers A and B have two interfaces between them, one
from A to B, and the other from B to A. An interface contains zero or more
data fields, with each data field processing a specific type. Available types in
Efeu include:

• Bit: 0 or 1.

• Boolean: true or false.

• Byte: unsigned 8-bit integer.

• Signed 16-bit integer.

• Signed 32-bit integer.

• A fixed-size array of the above type.

All types have fixed sizes that can be determined at the compile time. Ac-
cordingly, interface sizes, as the sum of their corresponding data fields, are
also predetermined.

Network A network, or layer topology, is a undirected graph composed of
layers and interfaces between them. Given connections between layers are
always bidirectional, the network is undirected. On every edge of a network,
there are two interfaces (directed).

The original linked-list-like structure qualifies as a network: each layer is
connected to two other layers, with the exceptions being the two endpoints
that connect to just one layer each. The concepts of the top/bottom layer and
upper/low layer are undefined unless a direction is defined (for example,
based on the level of abstractions in the I2C communication stack). For
consistency with the previous work, in the remaining part of this work,
we might still use the terms "upper" and "lower" layers. Readers shall
differentiate if this direction is defined by the I2C abstraction levels or by a
direction assigned to the layer topology.

Component A component refers to a subgraph of the network that is pro-
cessed as a unit through one backend in the Efeu compiler. The whole
network can be a single component. For instance, processing the whole
network as one component through the C backend results in a pure-software
driver codebase. Conversely, a network split into a C component and an
HDL component results in a combined software-hardware driver.

The talk Operation The talk operation is the successor of yield and
call in the previous works. Consider two connected layers A and B. Each
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(directional) interface has an associated with a talk operation. With the two
interfaces denoted as AToB and BToA, the corresponding talk functions are
ATalkB and BTalkA. A layer can only talk on the interfaces that originate
from the current layer, thereby ATalkB is only invokable in A, and vice versa.
ATalkB has the following semantics, executed in sequence:

1. Transmit values from A to B. Every data field in the outgoing interface
AToB must have a value associated with it.

2. Wait until B talks back via BTalkA.

3. Retrieve the values from B through its talk operation. It is guaran-
teed that every data field in the incoming interface BToA has a value
associated with it.

4. The execution resumes right after the ATalkB call.

Note that talk is a blocking operation. It only returns when the other side
talks back.

The read Operation The read operation has the same semantics as talk
except that it does not transmit values to the other layer (skipping step 1). The
equivalence of this operation in the original DSL is implicit—each process
gets a set of values from the lower layer on entry. Correspondingly, each
layer written in the new DSL always has a read operation at the entry of the
state machine, but is only executed once.

In the following sections, we present the DSLs of Efeu.

3.4 ESM: Efeu State Machine

The main parts of the specification for an Efeu-based system are the finite
state machines of layers. The DSL is named ESM, short for Efeu State Machine.
Syntactically, ESM is a subset of the C programming language. We make this
design decision for usability considerations. Tools designed for C are directly
applicable to ESM, such as code highlighting, code formatting, static checking,
and IDEs (Integrated Development Environment). From the implementation
perspective, the Clang frontend can process ESM as C without modifications,
while still offering users type checking and sophisticated diagnosis.

Subset of C ESM is syntactically a subset of C. Some features of C are not
part of ESM and some syntactical constructions have modified semantics.

• Allowed types: bit, bool, byte (unsigned char, unsigned 8-bit integer),
short (signed 16-bit integer), and int (signed 32-bit integer). bit and
bool are typedefed as unsigned char syntactically but semantically
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represents one-bit integers. Other built-in types like float and double
are not supported.

• Pointers are not supported.

• No global variables.

• Supported unary operations: plus (+), minus (negate, -), not (~), logical
not (!). Other operations like address (&), dereference (*), and pre- or
post-increment (++), are not allowed.

• Unsupported binary operations: comma (,).

• Supported control flow statements: if, while, goto. Other statements
such as do-while and switch are not supported.

• No struct definitions except those for interfaces (described below).

• No other function declarations or definitions except those for layers
and talk/read functions (described below). Layer functions encode
processes running indefinitely. No return.

• No initial values on variable declarations.

• Additional reserved keyword: Promela built-in keywords [6], such as
len and timeout.

The language design is affected by several factors, including Efeu’s necessary
functionalities, constraints from backend languages, and the complexity of
implementation. Future improvements are discussed in Section 7.3.

Interfaces Defined as Structs Interfaces are defined using the typedef
... struct format. Each data field in the interface translates to a field in the
struct. Semantically, there is no padding between fields, and adjusting the
padding option is not supported. Lines 7–11 and 13–16 in Figure 3.3 show
two examples.

Array types are handled in a more complex way. For each element type and
array size, a struct wrapper is generated. For example, if an interface contains
a field of an int array with size 16, a struct named intArray16 is created
(as seen in Line 5 in Figure 3.3). If another array field shares the same type
and size, the struct is reused. To access the array, users need to use .e.x[i]
instead of .e[I].

The main motivation behind this design choice is that Promela does not allow
passing raw arrays through channels. By wrapping the array in a struct, it can
then be passed. The previous works [14, 15] employ similar array wrappers
for array fields, although the 16-slot int array is the only supported type.
Staying consistent with them also helps minimize the adaptions required for
the existing verifiers to function.
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1 #ifndef ESM_EXAMPLE_ESI
2 #define ESM_EXAMPLE_ESI
3
4 typedef struct { byte x[4]; } byteArray4;
5 typedef struct { int x[16]; } intArray16;
6
7 typedef struct {
8 bit a;
9 bool b;

10 byteArray4 c;
11 } FooToBar;
12
13 typedef struct {
14 short d;
15 intArray16 e;
16 } BarToFoo;
17
18 #define PREAMBLE_Foo \
19 extern BarToFoo FooTalkBar(bit a, bool b, byteArray4 c); \
20 extern BarToFoo FooReadBar ();
21
22 #define PREAMBLE_Bar \
23 extern FooToBar BarTalkFoo(short d, intArray16 e); \
24 extern FooToBar BarReadFoo ();
25
26 #endif

Figure 3.3: An example of interface and function declarations to be included in ESM files. It
is also the header generated from ESI in Figure 3.6. The header guard is generated based on
the filename.

Declarations of talk and read Functions For each layer, available talk and
read functions are declared as extern C functions within a macro definition.
The macro is expected to be used at the beginning of the corresponding layer
function body. This approach, compared with declaring the functions in
the global space, helps limit the scope of these functions. While the ESM
compiler asserts the correct usages of these functions, possible misuses in
wrong layers can be prevented early in development with static checkers
and IDEs. Output parameters to the other layers are passed as individual
parameters. The values are passed back as a struct. Lines 18–20 and 22–24 in
Figure 3.3 show two examples.

Layers as Functions Layers are defined as void-returning functions with
no parameters. Layer functions encode processes running indefinitely and
thereby should never return. At the beginning of the function, the preamble
corresponding to the layer should be included to enable talk and read
functions in the function body, as shown at Line 4 in Figure 3.4.
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1 #include "example.esi.h"
2
3 void Foo() {
4 PREAMBLE_Foo
5 #define talkBar FooTalkBar
6 #define readBar FooReadBar
7
8 BarToFoo b;
9 b = readBar ();

10
11 loop:
12 /* ... */
13
14 b = talkBar(0, true , 42);
15
16 /* ... */
17
18 goto loop;
19 #undef talkBar
20 #under readBar
21 }

Figure 3.4: An example of ESM files. The header being included is shown in Figure 3.3.

Preprocessor Derivatives Preprocessor derivatives are supported in ESM. For
instance, at Line 5 and 6 in Figure 3.4, shorter aliases are set for the talk and
read functions. In addition to aliasing functions, users also can implement
polymorphism using macros. In the previous DSL [14, 15], processes support
compile time arguments. In ESM, this functionality is achieved by macros.
Later in this work, Figure 4.15 shows another example of reusing the same
state machine in multiple layers using #includes.

3.5 ESI: Efeu System Information

Interface definitions influence both the struct definitions and the talk/read
declarations. Manually crafting the template code like Figure 3.3 is error-
prone. Moreover, there are several constraints that need to be enforced on
the interface definitions. For instance, every pair of connected layers must
have two and only two interfaces in between. With end-user usability in
mind, we design another lightweight, declarative DSL for defining layers and
interfaces. The DSL is termed ESI, short for Efeu System Information. With
ESI, users are encouraged to design the system in a top-down approach: first
define the interfaces between layers, and then design the state machines.

Figure 3.5 shows the syntax of ESI. The language specifies layers and inter-
faces between them. Each pair of connected layers should have exactly two
interfaces. The directions of interfaces are annotated with the keywords =>
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and <=. In each interface, data fields are defined with a type and a name.
Single-dimensional arrays of elementary types are supported. Figure 3.6
shows an example of two layers with the interfaces between them. Later in
this work, Appendix A shows the complete ESI of the I2C stack.

⟨file⟩ |= (⟨layerDecl⟩ | ⟨interfaceDecl⟩) ∗ EOF
⟨layerDecl⟩ |= layer ⟨identifier⟩;

⟨interfaceDecl⟩ |= interface <⟨identifier⟩,⟨identifier⟩> {

⟨direction⟩⟨structDecl⟩,⟨direction⟩⟨structDecl⟩,?
}

⟨direction⟩ |= <= | =>

⟨structDecl⟩ |= { (⟨type⟩⟨identifier⟩) ∗ }
⟨type⟩ |= bit | bool | u8 | i16 | i32

⟨identifier⟩ |= ⟨char⟩ [⟨char⟩ | ⟨digit⟩] ∗
⟨char⟩ |= A . . . Z | a . . . z | _

⟨digit⟩ |= 0 . . . 9

Figure 3.5: Syntax of ESI. Entities are separated by one or more spaces, tabs, and/or new
lines, which are omitted for brevity.

1 layer Foo;
2 layer Bar;
3
4 interface <Foo , Bar > {
5 => {
6 bit a;
7 bool b;
8 u8 c[4];
9 },

10 <= {
11 i16 d;
12 i32 e[16];
13 },
14 };

Figure 3.6: An example of ESI. => annotates the interface from Foo to Bar. <= annotates the
reversed interface. This piece of code translates to Figure 3.3

ESI does not directly integrate with ESM code. Instead, users generate an
ESM header from ESI and use that header in ESM files. However, thanks
to the conciseness of ESI, the ESI file is still supplied to the compiler as a
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trusted specification when compiling the ESI files. If an interface struct or a
function signature in the ESM code is inconsistent with the ESI, ESMC trusts
the ESI and attributes the inconsistency to the user’s ESM code.
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Chapter 4

ESMC: ESM Compiler

After users specify the system topology with ESI and state machines with
ESM, the ESM compiler, ESMC, compiles them to various outputs based on
the user’s instruction: Promela code for model checking, C code for software
drivers, and/or Verilog/VHDL code for hardware drivers. Generating ESM
headers from ESI is also performed by ESMC. All these functionalities are
integrated into a single program. Users specify the desired output with
command-line options.

Figure 4.1 illustrates the user workflow using ESMC. As discussed in Chap-
ter 3, the first step of designing a system with Efeu is writing the ESI file and
generating a header to be included in ESM files, denoted as 1⃝ in Figure 4.1.
After that, the user writes ESM code using the generating header. The second
phase, denoted as 2⃝, involves supplying the ESI and ESM files to ESMC,
which then produces the desired user output.

ESMC also supports the whole system compilation. Given a system con-
figuration, ESMC automatically steers the corresponding backend pipelines
to generate a composition of software and/or hardware components. We
discuss this functionality in Section 4.8.

Internally, ESMC leverages several components from Clang/LLVM, including
the Clang Lexer, Parser and Codegen. However, it does not follow the LLVM
frontend-backend design mode but develops its own dataflow. Figure 4.2
shows the internal dataflow of ESMC with Promela backend flow in orange,
C backend flow in blue, and HDL backend flow in green. Notably, the HDL
flow goes through the Clang Lexer and Parser twice, denoted with 1⃝ and 2⃝.
For clarity, the dataflow of ESI is not shown. ESI code is lexed, parsed, and
compiled by ESMC and is used in all backends.

In the following sections, we describe the implementation details of compo-
nents in ESMC.
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Figure 4.1: ESMC workflow. Files with solid borders are written by the user and the dashed
ones are generated.

4.1 ESI Frontend

To lex and parse ESI, we develop a lexer and a parser. We define ESI AST
in LLVM style1. ESI lexer generates a token stream from the input ESI file.
Subsequently, the ESI parser takes the token stream and constructs an AST.
From the AST, an ESI compiler performs various checks. For example, it
ensures that there is at most one (or none) pair of interfaces defined between
any two layers. If no problem is detected, the internal presentation of ESI is
generated to be used in other components. Otherwise, errors are reported to
the user.

4.2 ESI to ESM Header Backend

The ESM header backend processes the internal representation of ESI and
emits the ESM header according to the rules discussed in Section 3.4 and
Section 3.5. The translation is straightforward. The header guard is gen-
erated from the input filename by capitalizing all letters and substituting

1https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/LangImpl02.html
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Transformed LLVM IR
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Figure 4.2: ESMC dataflow. Orange: Promela backend flow. Blue: C backend flow. Green:
HDL backend flow.

any non-alphanumeric characters with underscores, then prefixed with ESM_.
For example, if the input filename is i2c.esi, the header guard macro is
ESM_I2C_ESI.
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4.3 ESM Frontend

As discussed in Section 3.4, the ESM language is a subset of C. This allows
us to reuse the existing Clang frontend to lex and parse ESM files. In
addition, static type checking and built-in diagnosis (including code style
warnings) are immediately available. If there is no errors during parsing, the
frontend generates a Clang AST, which is subsequently directed to backends
(discussed in the following sections).

From the implementation perspective, ESMC adopts a similar construc-
tion as Clang. clang::CompilerInstance is the top-level object that man-
ages the whole complication process. The input ESM file is supplied
as a C file. Upon invoking CI.ExecuteAction, each input file is prepro-
cessed, lexed into a token stream, parsed into a Clang AST, and fed to the
ASTConsumer specified in the FrontendAction. Diagnoses are managed by
clang::DiagnosticsEngine, to which Clang frontend outputs warnings, er-
rors, and notes. Our FrontendActions can also raise customized warnings
and/or errors.

4.4 Promela Backend

As mentioned in Section 2.4, Clang adopts multiple intermediate represen-
tations through its compilation pipeline. For ESMC backends, there are
decisions to be made regarding which representations to use as the starting
points. One option is to start from the Clang AST. The source code under-
goes the preprocessor, the lexer, and the parser to reach this stage. The AST
preserves the source-level information with all macro expanded and type
checked. Another option is the LLVM IR. From the Clang AST, it additionally
goes through the IR generator and possibly optimization passes. At this
stage, control flow structures are flattened to labels and jumps. Information
like variable names is wiped out.

The Promela backend starts with the Clang AST. The primary motivation is
that the Clang AST retains variable names, while LLVM IR does not. After
ESM is translated to Promela, it still needs to be combined with external
Promela code (including the code that generates valid inputs and the code
that asserts outputs) to create the complete verifier. In this case, variable
names must be preserved so that those Promela code pieces match.

Furthermore, the Clang AST preserves source-level control flow structures.
When the SPIN model checker reports issues, the user needs to map the
Promela code back to the ESM code to debug. By starting from the Clang
AST, the mapping is mostly intuitive. In contrast, if we start with LLVM IR,
reverse engineering the control flow is cumbersome, if not impossible.
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For these reasons, we implement the Promela backend to take the Clang
AST as the input and the Promela code as the output. In the codebase, the
main class is PromelaEmitter. It acts as a clang::RecursiveASTVisitor that
traverses the Clang AST and emits Promela code in text.

Promela syntax closely resembles C syntax. A large portion of the syntax can
be translated directly to Promela, such as variable declarations, operators,
goto statements, etc. We discuss the notable parts of the translation rules
in the following subsections. The code emitted by the Promela backend is
properly indented.

4.4.1 Types

All ESM built-in types (bit, bool, byte, short, and int) are translated one-
to-one to Promela types of the same names. As discussed in Section 3.4,
bit and bool are not built-in types of C but typedefs (as unsigned char)
through esm.h. However, Clang AST preserves the typedef information, and
therefore PromelaEmitter can exactly map them to bit and bool in Promela.
Definitions of structs for interfaces and array wrappers are translated into
typedefs in Promela.

4.4.2 Enums

Promela supports mtype [6] for enumerations. It is essentially equivalent to a
global enum but with descending numbering down to 1. To faithfully retain
the C semantics of enums, ESMC converts them into macro definitions with
proper values assigned, and enum variables into int variables. Examples can
be seen in Figure 4.3).

ESM

typedef enum {
SYM_IDLE ,
SYM_START ,
SYM_STOP ,
SYM_BIT0 = 9,
SYM_BIT1 ,
SYM_STRETCH ,

} Symbol;

typedef struct {
Symbol sym;

} FooToBar;

Promela
#define SYM_IDLE 0
#define SYM_START 1
#define SYM_STOP 2
#define SYM_BIT0 9
#define SYM_BIT1 10
#define SYM_STRETCH 11

typedef FooToBar {
int /* Symbol */ sym;

};

Figure 4.3: ESM enum to Promela.
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4.4.3 ESM Interfaces to Promela Channels

Each interface from one layer to another is encoded as a rendezvous port
(or synchronous) channel (with buffer size 0) in Promela [6]. Sending to or
receiving from the channel is blocking, until the other side receives from or
sends to the channel (hence the term "rendezvous"). Such a channel encodes
the same semantics as the handshaking protocol: a transaction is done when
both sides are ready. Figure 4.4 shows an example piece of Promela code
containing channels between layers.

1 typedef byteArray4 {
2 byte x[4];
3 };
4 typedef intArray16 {
5 int x[16];
6 };
7
8 chan FooToBarChan = [0] of { bit , bool , byteArray4 };
9 chan BarToFooChan = [0] of { short , intArray16 };

10
11 typedef FooToBar {
12 bit a;
13 bool b;
14 byteArray4 c;
15 };
16
17 typedef BarToFoo {
18 short d;
19 intArray16 e;
20 };

Figure 4.4: Promela generated by only including the sample header (Figure 3.3) in the ESM
code, which is generated from the sample ESI (Figure 3.6).

4.4.4 ESM Functions to Promela Processes

As discussed in Section 3.4, a layer function in ESM is equivalent to an
ever-running process, which exactly resembles a Promela process. Therefore,
each layer function is translated to a corresponding Promela process.

One thing to note is that while ESM (its underlying C syntax) supports
multiple declarations (but not definitions) of the same function, Promela does
not support that. As a consequence, additional function declarations must be
eliminated. Figure 4.5 shows an example of such encoding.
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ESM

void Foo();

void Foo() {
int a;
a = 42;

}

Promela

proctype Foo() {
int a;
a = 42;

}

Figure 4.5: Encoding of an ESM layer function to Promela process.

4.4.5 Control Flows

Promela provides non-deterministic control flow constructs (Section 2.2) that
have different semantics from C. They need to be handled with care. Given
the allowed subset of C syntax in ESM, the relevant Promela control flow
constructs are if [6] and do [6].

Figure 4.6 shows an example encoding of the if statement. In C, if-else if
are evaluated in order. Therefore, when translated to Promela, an else if
should be translated to an if nested in the else, rather than another non-
deterministic choice of the previous if. Also, notice that an else -> skip
block is generated even if the if statement has no else. This is necessary. In
Figure 4.6, consider the case where a != 0. In C semantics, the execution
continues after skipping the whole body. In Promela semantics, if the else
-> skip is missing, the if statement becomes blocking until the condition
becomes true.

ESM

if (a != 0) {
if (a == 1) {

b = 1;
} else if (a == 2) {

b = 2;
} else {

b = 3;
}

}

Promela
if
:: (a != 0) ->

if
:: (a == 1) ->

b = 1;
:: else ->

if
:: (a == 2) ->

b = 2;
:: else ->

b = 3;
fi

fi
:: else -> skip;

fi

Figure 4.6: Encoding of the if statement from ESM to Promela.

Similarly, when encoding while in C as do in Promela, an else -> break
case is a must. Otherwise, the loop blocks when the condition is evaluated to
false, which owns a different semantics. Figure 4.7 shows an example of the
loop encoding.
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ESM

while (a < 10) {
while (b < 20) b += 2;
a += 1;

}

Promela
do
:: (a < 10) ->

do
:: (b < 20) -> b = b + 2;
:: else -> break;
od
a = a + 1;

:: else -> break;

od

Figure 4.7: Encoding of the while statement from ESM to Promela.

4.5 C Backend

The ESMC C backend transforms ESM code into C code, which can then be
compiled into executables or libraries as software drivers. The backend is an
extension of the compiler in previous work [14, 15], supporting the new ESM
syntax and the generalized talk and read functions (Section 3.4).

While ESMC is built on the Clang/LLVM framework that contains the com-
plete complication pipeline, the C backend emits C source code rather than
pushing it all the way to binary code. In this sense, the backend is more
of a rewriter than a compiler. The primary rationale behind this approach
is to ensure portability. The target platform for the generated stack may
be in a different architecture (for example, the new BMC is ARMv8-based).
Cross-compiling or compiling on the target machine is sometimes necessary.
Additionally, the target platform may run a different OS such as seL4 [19].
The generated code is platform-independent, offering flexibility to be com-
bined with OS-specific boilerplate code.

Efeu layers have the semantics of ever-running processes. A straightforward
way to implement it is to encode layers as threads and talk/read as inter-
thread communications. However, this approach introduces scheduling
overhead. In addition, the code becomes less portable by using OS-specific
thread implementations. Instead, we focus on a static scheduling strategy
proposed by the previous work [15].

For software like I2C drivers, concurrency in layers is not a required feature
for functionalities. While layers are modeled as processes, the whole stack
converges to a single execution point in one layer after initialization, while
other layers wait for replies from others. Whenever a layer yield or call
(talk in ESM), the layer hands out the execution handle and starts waiting,
while the target layer becomes active. Thereby, at any point, only one layer is
executing, while others are guaranteed to be waiting.

Systems with such property can be implemented as a single-threaded pro-
gram with C function calls and returns, without any concurrency abstractions
provided by the OS. Note that the semantics between the specification and
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the generated C code have not been formally proved. We briefly discussed
it later in Section 7.3 and it remains as a future work. But if limiting our
application to the I2C stack, the strategy has been proven functional for the
stack on real systems.

There are three main components in the C backend: the calling tree solver,
which decides how talkand/or read functions should be transformed; a
customized preprocessor, which processes macros like #include to prepare
the code for rewriting; and the core component—a rewriter, which transforms
ESM code to C code. We detail these three components in the following
subsections. For clarity, we discuss the rewriter before the customized
preprocessor, although they are executed in the reversed order in ESMC.

4.5.1 Calling Tree and Solver

The previous framework transforms calls into C function calls and yields
into continuations. In Efeu, we found the equivalence between call and
yield, thereby unifying them into talk. When generating C code, the actual
implementations, either a C function call or a continuation, are decided by
the calling tree.

The calling tree is a tree subgraph of the layer network. Given a calling
point as one of the layers, the calling tree is retrieved by performing a
depth-first search (DFS) on the layer network starting from the calling point.
Directed edges become C function calls, while the reversed edges become
continuations.

Figure 4.8 shows examples of calling trees. The two calling trees on the left
only use the I2C controller stack but employ different layers as the calling
point. The bold solid arrows represent edges of the calling tree, which
are implemented as direct function calls. The reversed edges, annotated in
dashed arrows, are implemented as continuations. By simply changing the
calling point, without modifying the stack, the user can generate both top-
down and bottom-up drivers. On the right side, Figure 4.8 shows a calling
tree by assembling a controller and a responder with a modified Electrical
layer talking to both devices in turn. Combined with proper boilerplate
code, an I2C simulator can be constructed.

In calling trees, one layer can call multiple layers, but every reachable layer
has a unique caller. This property ensures that only one interface pair is
mapped as the parameters of the resulting function. When a layer is called,
all input passed-by-value parameters have valid values and all output pass-
by-reference parameters are non-NULL.
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Figure 4.8: Examples of the calling tree.

4.5.2 Rewriter

The C backend takes ESM as input and outputs C. Essentially, it is a
rewriter. There are three rewriting processes that need to be performed.
In the ESMC codebase, they correspond to three classes: VarDeclRewriter,
TalkAndReadRewriter, and LayerFunctionRewriter.

The rewriters are based on the Clang AST Matcher and Rewriter. The Clang
AST Matcher is a DSL that describes the structure to be matched in the
Clang AST. Thanks to C++ templates, the target structure can be described
directly in C++ code. Matched elements are retrieved with customized
names. Examples follow as we discuss the rewriting steps below. The Clang
Rewriter provides APIs to rewrite source code. It works on source text rather
than the Clang AST. The most important APIs are inserting, replacing, or
deleting a range of text. Those ranges are provided by the Clang AST. Notice
that Clang Rewriter keeps changes in a buffer and the Clang AST remains
unchanged after each step. Therefore, it is important that the three steps stay
independent and do not interfere with each other.

Firstly, as discussed in the Section 3.4, local variables need to be converted to
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static global variables that preserve the values across function calls. This step
is performed by the VarDeclRewriter. Figure 4.9 shows the corresponding
AST matcher. It matches a function (denoted as func) that has a function
body (not only a declaration). For each variable declaration inside (denoted
as decl), the AST matcher is triggered once.

1 functionDecl(
2 hasBody(
3 stmt(
4 forEachDescendant(
5 declStmt(has(varDecl ())).bind("decl")
6 )
7 )
8 )
9 ).bind("func");

Figure 4.9: Clang AST matcher to match variable declarations in functions.

Figure 4.10 shows the simplified code of the rewriting process. It first asserts
that the enclosing function is a known layer function, otherwise it is skipped.
And for each variable declaration that is not static already, keyword static
is inserted before.

1 virtual void run(const MatchFinder :: MatchResult &Result)
override {

2 const FunctionDecl *Func =
3 Result.Nodes.getNodeAs <clang :: FunctionDecl >(" func");
4 assert(Func != nullptr);
5
6 // Only handle layers , but allow other functions
7 if (!ESI ->isLayer(Func ->getName ()))
8 return;
9

10 const DeclStmt *Decl =
Result.Nodes.getNodeAs <clang ::DeclStmt >(" decl");

11 VarDecl *Var = dyn_cast <VarDecl >(*Decl ->decl_begin ());
12 assert(Var != nullptr && "unhandled case other than VarDecl ");
13 if (!Var ->isStaticLocal ()) {
14 Rewriter.InsertTextBefore(Decl ->getBeginLoc (), "static ");
15 }
16 }

Figure 4.10: Code to change variable declarations matched by Figure 4.9 into static.

Based on the resolved calling tree (Subsection 4.5.1), a talk (or read) function
is transformed into either a C function call or a continuation. To pass data
around, the signatures of layer functions need to be transformed, which
is performed by LayerFunctionRewriter. The AST matcher is a single
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functionDecl. For each layer, the input and output fields are encoded
with the following rules:

• Each input field in the interface becomes a function parameter (passed
by value).

• Each output field becomes a function parameter that is passed by the
pointer.

• All these parameters are encoded as:
_<from layer>To<to layer>_<field name>.

Figure 4.11 shows an example on the right side of the transformed function
signature of CTransaction (Controller Transaction) from the void-returning
no-parameter layer function in ESM, assuming CEepDriver is its caller in the
calling tree. For clarity, the interface between CTransaction and CEepDriver
is shown on the left.

ESI
interface

<CTransaction , CEepDriver > {
<= {

i32 action;
i32 addr;
i32 length;
i32 data [16];

},
=> {

i32 res;
i32 length;
i32 data [16];

}

};

Promela

void CTransaction(
int _CEepDriverToCTransaction_action ,
int _CEepDriverToCTransaction_addr ,
int _CEepDriverToCTransaction_length ,
intArray16
_CEepDriverToCTransaction_data ,

int* _CTransactionToCEepDriver_res ,
int* _CTransactionToCEepDriver_length ,

intArray16*
_CTransactionToCEepDriver_data);

Figure 4.11: Interface between CTransaction and CEepDriver and the corresponding trans-
formed signature of CTransaction, assuming CEepDriver is its caller in the calling tree.

Also, the function calls of talk and read need to be transformed. To match
these function calls, we use the AST matcher shown in Figure 4.12. At
the outermost, it matches a function (denoted as enclosingFunc) that has a
function body (not only a declaration). The function body should contain
an assignment operation (denoted as assignOp) that assigns the result of a
function call (denoted as call) to a variable (denoted as var).

Figure 4.13 shows an example of transforming a talk function into a C
function call or continuation, adhering to the transformed function signatures.
Similarly, Figure 4.14 shows the transformation of a read function.

After the number of continuations in each layer function is determined, a
switch statement is inserted at the beginning of the function. This step is per-
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1 functionDecl(
2 hasBody(
3 stmt(
4 forEachDescendant(
5 binaryOperator(
6 hasOperatorName ("=") ,
7 hasLHS(declRefExpr ().bind("var")),
8 hasRHS(callExpr ().bind("call"))
9 ).bind(" assignOp ")

10 )
11 )
12 )
13 ).bind(" enclosingFunc ");

Figure 4.12: Clang AST matcher to match talk and read function calls.

ESM

v = ThisTalkOther(x, y)

Transformed Direct Call

Other(x, y, &v.a, &v.b);

Transformed Continuation
*_ThisToOther_x = x;
*_ThisToOther_y = y;
_continuation_pos = N;
return;
_continuation_N:
v.a = _OtherToThis_a;

v.b = _OtherToThis_b;

Figure 4.13: Example of transforming a talk function call into a C function call or continuation.
N is a newly allocated continuation index.

ESM

v = ThisReadOther ()

Transformed Direct Call

Other(0, 0, &v.a, &v.b);

Transformed Continuation
v.a = _OtherToThis_a;

v.b = _OtherToThis_b;

Figure 4.14: Example of transforming a read function call into a C function call or continuation.
For a function call, the input arguments are either 0 (for built-in types) or (T){} for array
wrapper type T. They should be ignored by the callee.

formed by LayerFunctionRewriter, after TalkAndReadRewriter determines
the number of continuations.

Finally, since layers are making direct function calls to each other, forward
declarations of the callees are inserted. This step is also performed by
LayerFunctionRewriter, after TalkAndReadRewriter determines the func-
tions being called in the layer.
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4.5.3 Customized ESM Preprocessor

As mentioned in the last subsection, changes made by the rewriters are stored
in a temporary buffer and flushed all at once at last. This approach works
if there is only one input ESM file and it does not contain C preprocessor
derivatives. However, given that ESM allows C preprocessor derivatives, a
significant challenge arises.

Consider the #include derivatives. When an ESM file includes another file
and a rewriting change occurs in that included file, the text range that Clang
Rewriter receives is in another file (Clang lexer and parser preserve the
include hierarchy). In that case, we cannot simply flush the change, which is
not in the main input file (and therefore not reflected in the output file) but
in another file.

One may consider making ESMC output multiple files and rewrite the
#include derivatives to make them point to the corresponding output file.
However, this solution cannot handle the case of rhombus dependency. As a
concrete example, in our I2C stack, the Controller Byte (CByte) layer and the
Responder Byte (RByte) layer are essentially the same state machine. For
maintainability, they include a shared function body from another file, but
rename talk and read functions with macros.

The ESM files are syntactically and semantically correct. However, when
performing the rewriting, the problem occurs. Two sets of changes are
applied on the same file Byte.inc.esm.

To address this challenge, one may consider running the C preprocessor
prior to ESMC to unfold all derivatives. However, this approach is not
optimal. C preprocessor not only expands #includes of ESM files, but also
those for system headers like stdio.h, as well as other derivatives like #if.
Note that code generated by ESMC may target a different platform. If that
is the case, users need to use the preprocessor of the cross-compiler with
all compilation flags set to correctly expand the code. If the code is to
be moved to the target platform and compiled natively there, this would
involve a cumbersome process of moving files back and forth. Even worse,
by expanding all macros, we forfeit the ability to hide code from ESMC but
expose them to the final compiler (such as calls to external libraries, which
ESMC does not understand)—all code in #ifs are already expanded.

Our approach is to implement a customized preprocessor that only expands
#includes and lets the rewriters work on the preprocessed file. Firstly,
it addresses the #include problem, including the rhombus dependency
situation. The source files can still be split into individual files for better
maintainability. After preprocessing, the output file is self-contained in a
single file. At the same time, other derivatives like #ifs remain intact, as long
as they are not in the range of parts to be replaced, such as in the middle
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Controller Byte Layer

void CByte() {
PREAMBLE_CByte

#define talkSymbol CByteTalkCSymbol
#define readSymbol CByteReadCSymbol
#define talkTransaction CByteTalkCTransaction
#define readTransaction CByteReadCTransaction

CSymbolToCByte s;
CTransactionToCByte t;

#include "Byte.inc.esm"

#undef talkSymbol
#undef readSymbol
#undef talkTransaction
#undef readTransaction

}

Responder Byte Layer

void RByte() {
PREAMBLE_RByte

#define talkSymbol RByteTalkRSymbol
#define readSymbol RByteReadRSymbol
#define talkTransaction RByteTalkRTransaction
#define readTransaction RByteReadRTransaction

RSymbolToRByte s;
RTransactionToRByte t;

#include "Byte.inc.esm"

#undef talkSymbol
#undef readSymbol
#undef talkTransaction
#undef readTransaction

}

Figure 4.15: ESM files of Controller Byte layer (CByte) and Responder Byte layer (RByte).
They are essentially the same state machine. Byte.inc.esm use the aliases for talk and read
for polymorphism.

of a talk or read call. By default, only #includes with double quotes and
pointing to a file that has .esm extension will be expanded. Other include
files like system headers are not processed. However, there is also an option
to expand all #includes to make the file more self-contained.

In addition, for completeness and usability, the customized preprocessor
outputs line derivatives. Line directives, also known as line markers or line
pragmas, are preprocessor directives that control how the source code lo-
cations are interpreted by the C/C++ compilers and debuggers. They are
used to track the origin of the source code, which is essential for producing
accurate diagnostics, such as error messages and warnings, as well as for
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generating debugging information. There are two common types of line
derivatives: one starts with #line, and the other starts with #, which is used
by Clang. It has the following format.

# lineno "filename" flag

• lineno: A positive integer representing the line number in the source
file.

• filename: An optional string specifying the source file’s name.

• flag: An optional integer flag that provides additional information
about the directive.

If the flag is omitted, the line derivative changes the source location directly.
Otherwise, it has one of the following values:

• 1: Indicates the start of a new file or a header file inclusion. The
preprocessor pushes the current file and line number onto a stack.

• 2: Indicates the end of a file or a header file inclusion. The preprocessor
pops the previous file and line number from the stack, returning to the
prior source location.

• 3: Indicates that the following text comes from a system header file,
which affects diagnostics and warnings.

C preprocessor has the ability to output line derivatives. Our customized
ESM preprocessor also implements such a feature. It is useful for debugging.
For example, when there is a compile-time error, the compiler can follow
the line derivatives and point back to the original ESM file. The same works
for debuggers, which are able to map the current instruction back to the
corresponding ESM file.

While the customized preprocessor solves the #include problem, for files
that are not inlined (such as accessory header files), there is still an include
path problem. If the output file is not in the same directory as the input file,
the compiler can have problems finding the file being included. According
to the GCC manual2, line derivatives do not change the include paths. The
suggested solution is to add the original directory to include paths explicitly
using the -I option. ESMC adopts this solution. When inlining files, the
preprocessor collects a set of paths where the files are located and reports
them to the user. The user can later use them to instruct the compiler to find
included files. For the whole system compilation (discussed below), these
paths are passed to the generated Makefile automatically. Alternatively, the
user can instruct the preprocessor to inline all files, not only ESM files. In

2https://gcc.gnu.org/onlinedocs/gcc-4.1.2/cpp/Search-Path.html
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that case, the output file is more self-contained (unless there are #includes
that are invisible to ESMC but visible to the compiler with macros).

The customized preprocessor can also be run separately, allowing the user to
inspect what code is actually being rewritten by the C backend.

4.6 HDL Backend

ESMC features generating HDL from the ESM specifications for constructing
hardware drivers. As an extension to Störzbach’s work, ESMC can generate
not only the full stack, but also parts of it. Furthermore, the new HDL
backend employs LLVM IR as the input, which allows us to integrate the
arsenal of existing LLVM optimization passes into the pipeline. While these
optimization passes are originally designed for optimizing software execution,
our later experiments show they help reduce the resource utilization on FPGA
implementation significantly.

The core idea of the HDL backend is to convert basic blocks (labels) in LLVM
IR into states in the FSM described by the HDL code. Instructions in each
block are translated into sequential logic, which is further implemented
as combinational logic. This idea is similar to the compiler by Störzbach.
However, Störzbach’s compiler uses labels at the source code level, where
control flow statements like if and while may still exist in the states. In
contrast, at the IR level, all control flow structures have been flattened as
labels and branches.

Arithmetic operations have their HDL equivalences and can be completed
in the same cycle. However, talk and read require special handling. ESMC,
succeeding Störzbach’s compiler, also employs the handshaking protocol
(Subsection 2.5.1) for inter-layer communications.

The handshaking protocol requires intermediate states. Störzbach’s compiler
uses common states for all yields and calls in the same layer, as discussed
in Subsection 2.3.5. ESMC takes a different approach: generate intermediate
states for each talk or read. This approach may introduce more intermediate
states, linear to the number of talks and reads in the layer. However, all
state transfers are deterministic at compile time, which enables optimizations
like Xilinx Vivado FSM auto state encoding.

Figure 4.16 illustrates the state transfer of talk ( 1⃝) and read ( 2⃝) in ESMC.
Three additional states are created for a talk and two for a read. To create
those intermediate states, an IR manipulation is needed (Subsection 4.6.3),
creating extra basic blocks that correspond to these states. Later in the
process, the talk and read function calls are translated into operations in
these states.
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OUT_READY_
WAIT

IN_VALID_
WAIT

RESET_IN_
READY

①
Current

State with
a talk

(operations before talk)
out_data = <value>

out_valid = 1

out_ready == 0

out_ready == 1

out_valid = 0

in_valid == 1

in_valid == 0

in_ready <= 0
(operations after talk/read)

in_data = <port>
in_ready = 1

②
Current

State with
a read

(operations before read)

Figure 4.16: State transfer (Mealy machine) for a talk ( 1⃝) or a read ( 2⃝) in ESMC. State and
signal names are simplified for clarity.

In this section, we present the details of the HDL backend in the order of the
workflow.

4.6.1 Pre-Transformation

As shown in Figure 4.1, the input ESM file first undergoes the preprocessor,
the lexer, and the parser, into Clang AST. However, unlike the other two
backends that directly operate on the Clang AST, the HDL backend enters a
phrase called pre-transformation.

In this phase, a variation of the C rewriter is used to rewrite the input
ESM code. A similar rewriting as in Subsection 4.5.2 is applied to the code,
except that every talk or read function is transformed to a direct C function
call with no return value but input and output fields expanded as function
arguments. With such a transformation, the LLVM IR generated later can be
greatly simplified.

In their original form, talk and read functions return entire structs. Dealing
with structs in IR can be intricate as it involves a number of pointer operations,
which is not the advantage of HDL. In addition, transforming local variables
to global static variables simplifies the IR as well. Otherwise, the backend
would need to handle IR intrinsics like llvm.lifetime.start.

The pre-transformed code is fed into the preprocessor, the lexer, and the
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parser again into another Clang AST.

4.6.2 LLVM IR Generation and Optimization

Once the Clang AST of the pre-transformed code is acquired, it is fed into the
Clang Codegen pipeline to generate LLVM IR. Subsequently, the IR is opti-
mized with the existing Clang/LLVM optimization passes. The optimization
pipelines are encapsulated in llvm::ModulePassManager. Similar to Clang,
ESMC allows the user to specify the optimization levels (O2, O0, etc.), but
with O2 as the default configuration.

4.6.3 LLVM IR Manipulation for talks and reads

As discussed above, the handshaking protocol requires extra cycles to operate
on the ready and valid signals. Those extra cycles are reflected as extra states
in the IR. Therefore, before going into the phase of generating HDL, a
customized IR pass is executed to create these intermediate states. On every
call instruction corresponding to a talk or read, the basic block is split three
times after the call. The three new basic blocks are marked and passed to the
next phase.

4.6.4 LLVM IR to Verilog

The final but most crucial step, is to transform the IR to HDL. The component
for this phase is called IRTranscoder. We chose Verilog as the backend
language. An out-of-the-box Verilog AST framework verilogAST-cpp3 are
used with a few modifications.

IRTranscoder operates on IR functions (which are Efeu layers). For each
function, a Verilog module is created. An example is shown below. The
module has ports for a clock signal and a reset signal, plus ports for interfaces.
Given an interface from layer A to layer B, the Verilog module of A contains
output ports of data fields, output valid signal, and input ready signal.
Module B has the same ports with reversed directions. Similarly, the twin
interface from B to A is encoded in the same way.

Inside the module, there is a single always @(posedge clk) block. The block
contains the synchronous reset logic and the state machine.

3https://github.com/leonardt/verilogAST-cpp, accessed 2023-08-31.
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LLVM IR

define void @Layer () #0 {
entry:

; some code
br label %LABEL0

LABEL0:
; some code
br label %entry

}

Verilog

module Layer (
input clk ,
input rst ,
// data , valid , ready ports

);
parameter S_ENTRY = 1’d0;
parameter S_LABEL0 = 1’d1;

reg state;
// reg of variables

always @(posedge clk) begin
if (!rst) begin

state = S_ENTRY;
// reset variables

end else begin
case (state)
S_ENTRY : begin

// some code
state = S_LABEL0;

end
S_LABEL0 : begin

// some code
state = S_ENTRY;

end
endcase

end
end

endmodule

LLVM IR uses the Static Single Assignment (SSA) representation. Each vari-
able, either local or global, is only assigned once. Variables have types, such
as void, integer, and pointer. When translating LLVM to Verilog, variables
are translated into registers.

The void type represents nothing, thereby void-typed variables are ignored
when translated to Verilog.

Non-void variables with non-pointer types are translated to registers (vectors)
with the same bit sizes. The MSB is the left index and the LSB is the right
index. For example, i32 in LLVM IR corresponds to [31:0] in Verilog. Structs
are tightly packed into vectors with no paddings between fields.

While ESM disallows pointers, the generated IR can still contain pointers. For
example, the return types of the alloca instruction and the getelementptr
instruction as well as global variables, are pointers. The HDL backend
supports one-level pointers, that is, pointers with their dereferenced types
being non-pointers. Variables with pointer types are translated to registers
(vectors) with the size of the dereferenced types. Nested pointers are not
supported.
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With all SSA variables transformed into registers, the number of registers can
be large. However, a large portion of them are not actually implemented as
registers on FPGAs. For instance, if all reads of a register are in the same
cycle as its assignment (in the same state in term of the FSM, or in the same
basic block in term of the IR), EDA tools like Xilinx Vivado are capable of
implementing them as wires without actually creating registers.

In the remaining part of this subsection, we present the translating rules of
the supported LLVM IR instructions and intrinsics. In term of presentation,
we show the LLVM IR code on the left and the corresponding Verilog on the
right. Placeholders are wrapped in < and >, such as <op>. On the Verilog
side, |expr| represents the processed expr, evaluating to the corresponding
register (vector) if expr is a variable, the corresponding Verilog operator if
expr is an operator, or the corresponding constant representation if expr is
a constant, etc. ||<pointer>|| represents the special handling for pointer
<pointer>, referring to the actual storage referred by the pointer rather the
pointer itself.

alloca Instructions The alloca instruction allocates space on the stack. It
returns a pointer to the stack slot. As discussed above, a register (vector) is
created for the pointer with the size of the dereferenced types. No operation
is generated in place for the alloca instruction.

Branch Instructions Branch instructions are translated into assignments to
the state variable.

LLVM IR
br label <dest >
br i1 <cond >, label <iftrue >,

label <iffalse >

Verilog

state = |<dest >|
state = |<cond >| ? |<iftrue >| :

|<iffalse >|

Comparison Instructions Comparison instructions are translated to the
corresponding comparison operations in Verilog.

LLVM IR
<result > = icmp <cond > <ty >

<op1 >, <op2 >

Verilog

|<result >| = |<op1 >| |<cond >|
|<op2 >|

|<op1>| and |<op2>| is wrapped with
$signed if <cond> is signed.

Load and Store Instructions Load and store instructions are translated to
assignments. Note that the width of the operation does not depend on the
dereferenced type of <pointer>, but on type <ty>. Therefore, <ty> must be
taken into consideration when processing <pointer>.
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LLVM IR
<result > = load <ty>, ptr

<pointer >
store <ty> <value >, ptr

<pointer >

Verilog

|<result >| = ||<pointer >||

||<pointer >|| = |<result >|

||<pointer>|| takes the whole or a part of
the variable referred by the pointer based on
<ty>.

Switch Instructions Switch instructions are translated to cases in Verilog.

LLVM IR
switch <intty > <value >, label

<defaultdest > [ <intty >
<val >, label <dest > ... ]

Verilog

case(|<value >|)
default: state =
|<defaultdest >|

|<val >|: state = |<dest >|
...

endcase

Select Instructions Select instructions are translated into ternary operators
in Verilog.

LLVM IR
<result > = select <selty >

<cond >, <ty > <val1 >, <ty>
<val2 >

Only <selty> of i1 is supported.

Verilog

|<result >| = |<cond >| ?
|<val1 >| : |<val2 >|

Zero or Signed Extensions Zero or signed extensions are translated to
concatenation operators in Verilog by prepending 0 or the MSB.

LLVM IR
<result > = zext <ty> <value >

to <ty2 >
<result > = sext <ty> <value >

to <ty2 >

Verilog

|<result >| = { |sizeof <ty2 > -
sizeof <ty >|’b0 , |<value >| }

|<result >| = { |sizeof <ty2 > -
sizeof <ty >| { |<value >| [
|sizeof <ty> - 1| ] },
|<value >| }

Truncate Instructions Truncate instructions are translated to assignments
by taking the LSBs.

LLVM IR
<result > = trunc <ty> <value >

to <ty2 >

Verilog

|<result >| = |<value >|[| sizeof
<ty2 > - 1|:0]

Binary Operations Binary operators in LLVM IR are translated to the
corresponding operators in Verilog. Since ESM does not support floating-
point operators, they do not exist in the resulting IR.
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LLVM IR
<result > = <binop > <ty> <op1 >,

<op2 >

<binop> can be add, sub, mul, udiv, sdiv, shl,
lshr, ashr, and, or, xor, but no floating-point
ops

Verilog

|<result >| = |<op1 >| |<binop >|
|<op2 >|

|<op1>| and |<op2>| may be warpped with
$signed()

PHI Instructions The PHI instruction is used to implement the φ node in
the LLVM SSA graph. They are placed at the beginning of the basic block. It
returns the value associated with the predecessor basic block that is executed
just prior to the current block. When translated to Verilog, no operation
is generated in place. Instead, at the end of each predecessor block, an
assignment is placed.

LLVM IR

<result > = phi <ty> [ <val0 >,
<label0 > ], ...

Verilog
At the end of each <label >:

|<result >| = |<value >|

LLVM memcpy Intrinsics llvm.memcpy intrinsics are translated to assign-
ments with the copy size statically calculated. The size must be a constant at
compile time.

LLVM IR

call @llvm.memcpy.p0.p0.i32/i64
(ptr <dest >, ptr <src >,

i32 <len >, i1 <isvolatile >)

Verilog

||<dest >|| = ||<src >||

LLVM memset Intrinsics llvm.memcpy intrinsics are translated to assign-
ments by replicating the 8-bit value. The length to assign must be a constant
at compile time.

LLVM IR

call @llvm.memset.p0.i32/i64
(ptr <dest >, i8 <val >,

i32 <len >, i1 <isvolatile >)

Verilog

||<dest >|| =
{|<len >|{|<val >|}};

getelementptr Operators/Instructions getelementptr can be used as a
standalone instruction or an operand of another instruction. Its only use
case in the IR generated from ESM code is for accesses into structs or arrays.
IRTranscoder takes the register (vector) corresponding to the input pointer
and calculates the offset by following the structs and/or array.

talk and read Function Calls As discussed above, talk and read function
calls are implemented with the handshaking protocol. The intermediate states
have been created by the IR manipulation passed discussed in Subsection 4.6.3.
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In IRTranscoder, the corresponding function call is translated into operations
into states.

LLVM IR

call void <fn > (<out -ty> <out -val >, ..., ptr <in-ty>, <in -ptr >,
...)

The call must be a valid talk/read function with correct params.

Verilog

|CURRENT_BASIC_BLOCK |: begin
(previous code)
|out -data -port| = |<out -val >|; (if talk)
|out -valid -port| = 1’b1; (if talk)
state = |OUT_READY_WAITING |; (if talk , or |IN_VALID_WAITING|
if read)

end
|OUT_READY_WAITING |: begin (if talk , or no this state if

read)
if (|out -ready -port| == 1’b1) begin

|out -valid -port| = 1’b0;
state = |IN_VALID_WAITING |;

end
end
|IN_VALID_WAITING |: begin

if (|in-valid -port| == 1’b1) begin
||<in-ptr >|| = |in-data -port|;
|in -ready -port| = 1’b1;
state = |RESET_IN_READY |;

end
end
|RESET_IN_READY |: begin

|in -ready -port| = 1’b0;
(remaining code)

end

Intermediate states are created ahead of time.

4.7 Integration with Build Systems

ESMC acts as a compiler. For complicated systems, it is a common practice
to organize source files into a hierarchy and employ build systems like Make
or CMake. In the context of the I2C stack, layer specification files are shared
by multiple complication targets to create different configurations. With the
end-user usability in mind, Efeu is designed to be easily integrated with
build systems. In this section, we discuss those features.

4.7.1 Use of Preprocessor Derivatives

The ESM language allows C preprocessor macros, which enables users to
create systems with flexibility.
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Modularity The incorporation of #include and #define facilitates modular
designs and helps reduce duplication. For example, as already shown in
Figure 4.15 above, the same state machine can be reused in multiple layers
by using these two preprocessor derivatives. Layers can also be assembled
using #include. For example, Figure 4.17 shows the assemble of a top-down
controller stack, with the World layer as the calling point and the Electrical
layer bridging to the GPIO driver to perform bit-banging on the I2C bus.

1 #include "boilerplate/CWorld -entry.esm"
2 #include "layers/CEepDriver.esm"
3 #include "layers/CTransaction.esm"
4 #include "layers/CByte.esm"
5 #include "layers/CSymbol.esm"
6 #include "boilerplate/CElectrical -gpio.esm"
7
8 #if defined(__ESMC_C__) && defined(__GNUC__)
9 #include <stdio.h>

10
11 int main() {
12 /* some code */
13 }
14 #endif

Figure 4.17: ESM code of a top-down controller stack, with CWorld (Controller World) as the
calling point and CElectrical of a bridge to GPIO.

Polymorphism Polymorphism can be achieved by using #define. For ex-
ample, the RTransaction (Responder Transaction) layer uses macro RESP_ADDR
as the responder I2C address. By creating multiple instances of the responder
and specifying different values for RESP_ADDR, a multi-responder system can
be assembled.

Conditional Compiling Conditional derivatives like #if allow conditional
compiling. Similar to Clang and GCC, ESMC defines macros to differentiate
different backends.

• __ESMC_PROMELA__ is defined when running the Promela backend.

• __ESMC_C__ is defined when running the C backend and should be
defined when running the C compiler on the generated C code (which
is controlled by the end-user when invoking the C compiler). The
main reason is to allow native-C boilerplate code to be wrapped in
#if defined(__ESMC_C__)&& defined(__GNUC__), where the latter is
defined by Clang and GCC. Asserting on only __GNUC__ is not sufficient,
as the Promela pan compiler also invokes Clang or GCC.

• __ESMC_HDL__ is defined when running the HDL backend.
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With conditional compiling, boilerplate code can be written directly in ESM
files, like Lines 8–14 in Figure 4.17.

4.7.2 Auto Dependency Generation

An important aspect of the compilation process, especially in large projects,
is managing dependencies between source files. Dependencies ensure that
when a file is changed, all files that rely on it are recompiled to reflect
those changes. This is particularly crucial with C family languages where
header files are often used across multiple source files. To help manage these
dependencies, GCC and Clang both provide the -MD command line option.
The option instructs the compiler to generate a list of dependencies into a
file, the depfile, by scanning through the source code. Such functionality is
built into the preprocessor. Build systems like Make and Ninja make use of
the information to ensure correct and efficient incremental builds.

Built upon Clang/LLVM, ESMC inherits such a feature. The same -MD option
instructs ESMC to generate a depfile for the input ESM source file. The user
can also change the filename of the depfile using -MF option, in the same way
as GCC and Clang.

4.7.3 CMake Build System Integration

To further ease the work of using ESMC in the CMake build system, several
CMake functions are created for the end-users to define compile targets
with auto dependency resolution. For example, the CMakeLists code piece
in Figure 4.18 defines a target called top-down-c1-gpio using the ESMC
C backend that compiles the specified ESI and ESM files, and generates
executable using the default C compiler after combining with the boilerplate
code. The calling point is CWorld. For the complete usage of those CMake
functions, please refer to the ESMC user manual.

1 esm_add_c_executable(top -down -c1-gpio
2 ESI i2c.esi
3 ESM assemble/top -down -c1-gpio.esm
4 ADDITIONAL_SRC boilerplate/console.c boilerplate/i2c_gpio.c
5 INCLUDE_DIRS boilerplate
6 CALLING_POINT CWorld)

Figure 4.18: A CMake code piece to add an executable target using ESMC.

4.8 Whole System Compilation

Advancing beyond the previous works, ESMC supports the whole system
compilation, allowing the composition of software and hardware components
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into a single stack. The system is specified by a YAML file. Figure 4.19
shows an example of such YAML files. The file specifies the following
configurations.

• The configuration description.

• Working directory for all relative paths in the configuration.

• ESI filename and the corresponding generated header.

• Layers and their corresponding ESM files.

• Components. Each component is set to run against a backend. Its
configuration includes the set of layers and the backend-specific options.

• Interfaces between components. Each interface has a type, an origin
layer in one component, and a destination layer in another component,
as well as interface-specific options.

Whole system compilation not only allows mixing heterogeneous components
into a driver, but also takes care of handling interface generation between
components. Conceptually, generating interfaces between heterogenous com-
ponents is just an another way of implementing the talk function, like call
and continuation between C layers, and the handshaking protocol between
hardware layers.

Currently, the only interface between heterogenous components supported
by ESMC is the memory-mapped IO (MMIO) AXI Lite interface, between
a C component and a HDL component. However, one can imagine more
interfaces to be supported by ESMC. For instance, there can be a way to
talk via inter-process communication mechanism, or across the VM-host
boundary through virtual devices to implement software drivers with strong
isolation.

4.8.1 MMIO-AXI Lite Interface

ESMC is capable of generating the MMIO-AXI Lite interface between a C
component and an HDL component. Figure 4.20 illustrates the architecture
of a system with one C component and a HDL component, connected with
the MMIO-AXI Lite interface. Between the two layers that cross the software-
hardware boundary, their interfaces, plus the ready and valid signal for the
handshaking protocol, are mapped to AXI Lite registers with different offsets.
For clarity, in the following paragraphs, we call the software part as MMIO
driver, and the hardware part the AXI Lite driver.

Mapping Interfaces to Registers With the current implementation, AXI
Lite with 32-bit bus width is supported. Each register is 32 bits wide, or 4
bytes in the memory-mapped address space. The first register with offset 0 is
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1 description: "Top -down EEPROM controller driver with CWorld to
CEepDriver in software and CTransaction to CSymbol in
hardware , connected with AXI Lite"

2 rootDirectory: ".."
3 esi: i2c.esi
4 esi -header: i2c.esi.h
5 layerFiles:
6 CWorld: boilerplate/CWorld -entry.esm
7 CEepDriver: layers/CEepDriver.esm
8 CTransaction: layers/CTransaction.esm
9 CSymbol: layers/CSymbol.esm

10 CByte: layers/CByte.esm
11 components:
12 SW:
13 backend: c
14 layers:
15 - CWorld
16 - CEepDriver
17 callingPoint: CWorld
18 outputType: executable
19 outputFilename: top -down -CTransaction -IP -SW
20 extraSourceFiles:
21 - boilerplate/console.c
22 - boilerplate/main -console -CWorld.c
23 HW:
24 backend: hdl
25 layers:
26 - CTransaction
27 - CByte
28 - CSymbol
29 interfaces:
30 SW -HW:
31 from: CEepDriver
32 to: CTransaction
33 type: axilite
34 mmioHeader: boilerplate/mmap -io.h
35 mmioSource: boilerplate/mmap -io.c

Figure 4.19: Example of the YAML file that describes the system for ESMC whole system
compilation.

reserved for status checking and resetting. If a data field in the layer interface
is larger than 32 bits (for example, an array), it spans across multiple registers.
If a data field is less than 32 bits, it takes the low bits of the register. The valid
and ready signal follows the data fields. While they both require only one
bit each, they each take up one register, mainly for ease of implementation.
A more compact encoding of the interface remains a future work.

Status and Reset Register When generating the connection, ESMC com-
putes a checksum with the names of the two connected layers and data fields
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Figure 4.20: Architecture of a system with one C component and an HDL component,
connected with the MMIO-AXI Lite interface.

in their interfaces. On the software side, the MMIO driver reads the status
register once at initialization. If the result matches the magic number, it
indicates the two sides match. A connection is then established. On the
hardware side, the AXI Lite driver is able to detect the read. Subsequent
reads on the status register return 0, indicating the device is already used by
a program.

If the MMIO driver reads back 0 from the status register, it means there is an-
other program that already established a connection with the AXI Lite driver.
In this case, the MMIO driver has the option to reset the hardware part, by
writing the magic number back to the status register. This action resets the
AXI Lite driver as well as layers in hardware (assuming they are connected
to the reset signal correctly in the FPGA design). Subsequently, the hardware
part becomes connectable again. If the program previously connected to the
hardware is still running, a conflict may arise. It is the software’s responsibil-
ity to decide whether to reset and connect or to about. The AXI Lite Driver
only resets itself if the magic number is written. Without knowing the magic
number, other programs cannot accidentally or maliciously reset the AXI Lite
driver.

AXI Lite Driver AXI Lite Driver bridges the AXI Lite interface with the
layer that it connects to, providing the same ports as the layer interface (data
+ valid + ready ports). Connecting the data field to the memory-mapped
registers is straightforward. However, the valid and ready signals require
extra attention.

The handshaking protocol assumes the sender and the receiver operate in the
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same clock domain. After a cycle where both valid and ready are raised, the
sender needs to lower the valid signal immediately on the next clock cycle
if there is no more data to send. Otherwise, the receiver treats data on the
bus as the next valid packet. Similarly, the receiver needs to lower the ready
signal unless it can immediately accept more data on the next cycle.

However, when crossing the software and hardware boundary, the two sides
are not in the same clock domain. If the valid port is implemented as a dumb
register, it is possible that the software side cannot reset it in time, resulting
in the same data being transmitted multiple times. Similarly, if the software
side does not reset its ready port in time, the hardware side considers it to be
ready all the time and may send multiple packets that overwrite one another,
resulting in data loss.

Our solution to this problem is to perform automatic resets on the hardware
side in the AXI Lite Driver, which is in the same clock domain as the HDL
layers. Software writing a non-zero value to its output valid port means
the data in the data registers are valid once. If the data is consumed, the
valid signal is lowered in the hardware on the next cycle. Similarly, writing a
non-zero value to its output ready port means the MMIO driver is ready to
accept one packet. Once a packet is in place, the ready signal is lowered by
the hardware on the next cycle.

MMIO Driver MMIO driver consists of the implementation of the corre-
sponding talk and read functions, adhering to the handshaking protocol.
Targeting the Linux platform, the MMIO driver memory maps the registers
through /dev/mem at initialization. With auto-resetting ready and valid regis-
ters in the AXI Lite Driver, MMIO driver only needs to assert them but does
not need to deassert them.
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Chapter 5

Verification

With the Promela backend in ESMC, the I2C stack can be translated to
Promela code for model checking. The controller I2C stack written with Efeu
is verified against the verifiers described in Subsection 2.3.3 using the SPIN
model checker to ensure it conforms to the I2C specification. Specifically,
the composition of one controller and one responder up to a target layer
(Symbol, Byte, Transaction, and EepDriver) is equivalent to the corresponding
abstraction viewing from the immediately higher level. Verifiers also ensure
the absence of deadlocks and livelocks in the compositions.

The experiment is performed on an Intel Xeon W-2255 CPU @ 3.70GHz
machine running Ubuntu 20.04.4 LTS with 126 GB RAM. The SPIN version is
6.5.2, the latest version available at the time of writing. The verifier setup is
identical to the previous works [14, 15]. Every verifier is compiled twice, one
with the default SPIN pan compilation options, and the other with the Non-
progress Cycle (NPC) check (discussed in Subsection 2.2.1) enabled. Output
of the pan verifiers is checked for any detected issues. In addition, every
verifier is executed 3 times and the run time is measured. For completeness,
like previous works, we also test how layers of abstraction help speed up the
verification process.

All verifiers pass. The average run times are reported in Table 5.1 and Table 5.2.
Verifying the full implementation of layers up to the Transaction layer takes
the most time, 39.23 seconds. Most verifiers take less than 10 seconds to run.
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Table 5.1: Average Verification Run Time (s) Using the Default SPIN Options

Full Implementation SymbolSpec ByteSpec TransactionSpec

Symbol 0.08

Byte 1.33 0.43

Transaction 14.82 5.12 1.15

EepDriver 9.22 3.02 0.54 0.19

Table 5.2: Average Verification Run Time (s) with the Non-progress Cycle Checks Enabled

Full Implementation SymbolSpec ByteSpec TransactionSpec

Symbol 0.10

Byte 3.37 1.10

Transaction 39.23 14.01 3.25

EepDriver 24.97 8.27 1.29 0.41
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Chapter 6

Evaluation on Real Devices

In this section, we present the evaluation results of the I2C stack. All experi-
ments discussed in this chapter are conducted with the following setup.

I2C Controller Experiments run on the ZynqMP SoC [32] on an Enclustra
XU5 module [8]. The module is placed on the PE1 Based Board [7]. Two
GPIO pins connected to the SoC PL are used as the SCL and the SDA, which
are routed to the PE1 baseboard and then to an IO connector.

I2C Responder (EEPROM) A Microchip 24AA512 EEPROM [20] is con-
nected to the I2C bus, with its address configured to 0x50. Compared to
volatile memory like RAM, EEPROMs have slower write speed. 24AA512
page writes can take up to 5 ms. Internally, the chip has a self-timed
erase/write cycle to handle burst writes from the I2C controller. How-
ever, during the periods when the device is busy, it may stop responding
to the subsequent I2C requests. In this evaluation, our main focus is the
performance of the generated drivers on I2C transactions, rather than the
performance of the EEPROM itself. Therefore, we only use write operations
in manual validations, in which the EEPROM has sufficient time to respond.
In contrast, in experiments driven by programs, especially in those time-
measuring experiments (Subsection 6.2.2 and Subsection 6.3.1), we only issue
read requests to the EEPROM, which the device has no problem handling at
high speeds.

Oscilloscope A Keysight InfiniiVision MSO-X 3024T oscilloscope [18] is
connected to the SCL and the SDA lines. The oscilloscope is capable of
decoding I2C packets.

Software APU of the SoC runs a modified OpenBMC [5] distribution, which
is based on Linux kernel 5.4.0. Software parts of the generated I2C drivers
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are cross-compiled to AArch64 with GCC 11.2.0 with O3 optimization.

FPGA Design Customized bitstreams are flashed into the FPGA in the SoC
PL. The base FPGA design consists of components for the Enzian BMC, such
as the GPIO drivers. The relevant part with the evaluation is an IP block
connected to the SCL and SDA pins, either a Xilinx GPIO driver (for bit-
banging drivers) or a generated I2C driver (for combined software-hardware
drivers), as shown in the bottom-right of Figure 6.1. All components are
driven by the 100 MHz clock from the MPSoC. The design is synthesized
and implemented using Xilinx Vivado 2020.1 with default settings.

AXIZync UltraScale+
MPSoC

AXI

AXI
AXI

SmartConnect

Other IPs

Xilinx GPIO Driver /
Generated I2C Driver

SCL

SDA

Figure 6.1: Simplified FPGA block diagram.

6.1 Baseline

To establish the baseline, we first reproduce the results in Humbel’s work [14,
15], using their generated C code combined with the boilerplate code shipped
with the codebase. The purpose of this experiment is to validate the function-
ality of the I2C stack specification from the original framework for our test
platform. The original bit-banging code, as seen in Appendix B, uses very
conservative timing. There are long manually inserted intervals between SCL
and SDA operations. Since the main focus of this experiment is functional
correctness, while timing is less of a focus, we keep the bit-banging as the
original codebase.

The I2C stack is compiled into C code using the compiler from Humbel et
al.. The resulting code is combined with the bit-banging boilerplate code and
compiled into an executable. The Xilinx GPIO driver IP is used in the FPGA
design. The executable controls SCL/SDA pins through Linux sysfs. The
evaluation is conducted on the experiment platform described above.

Figure 6.2 shows the decoded I2C transactions by the oscilloscope. They
correspond to the hardcoded operations in the original top layer as shown in
Figure 3.2. The first transaction is a write operation for 2 bytes starting from
address 0x06, with values 32 (0x20) and 33 (0x21). The second transaction is
a EEPROM read starting from address 0x06. The same values are read back.
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Figure 6.2: Decoded I2C transactions using the generated software drivers in the previous
work [14, 15]. The yellow signal is SCL. The green signal is SDA. Decoded values are shown
in hexadecimal. W: write. R: read. a: ACKnowledged. S: restart.

Decoded I2C transactions show that the hardcoded high-level operations
undergo the stack and correctly operate the electrical bus. The transaction
timing is not ideal (Figure 6.2 is displayed with the time scale of 500ms). The
read operations takes 1.7 seconds and the write operation takes 2.0 seconds.

6.2 Bit-Banging Software Driver

In this section, we showcase the evaluation result on the bit-banging software-
based driver written with our new framework Efeu, generated with the
ESMC C backend. We first validate its functionalities by gluing it with the
unmodified bit-banging driver code.

After that, we optimize the bit-banging driver code originating from the
previous codebase by removing all manual delays. An experiment shows
that even without these manually inserted delays, Linux sysfs introduces a
significant overhead that prevents the driver from running at the target speed
(400 kbit/s). We report the timing in the second subsection.

6.2.1 Functional Correctness

In this experiment, we validate the functional correctness of the generated
software driver. Specifically, we are interested in whether the major advance-
ment of Efeu to its predecessor works correctly: top-down architecture with
an open interface at the top level. We use the unmodified bit-banging driver
code at the Electrical layer.
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The I2C stack is compiled into C code using ESMC. The resulting code is
combined with the bit-banging boilerplate code. As the stack written in Efeu
now has an open interface at the top level, we write a simple shell to drive the
stack with users’ inputs. The combined code is compiled into an executable,
which runs on the experiment platform described above. Xilinx GPIO driver
IP is used in the FPGA design.

Figure 6.3 shows the log of a manual validation of the driver. Lines starting
with > are input commands. Firstly, the driver is invoked to read one byte
from EEPROM address 0x06 (Line 4). The operation is done successfully,
indicated by the status code ME_RES_OK. Returned data follows. Next, the
driver is invoked to read 8 bytes starting from address 0x06. Subsequently,
the driver is used to read and write EEPROM with different data, length,
and/or starting addresses. The results are all expected. On the last write
(Line 13), the transaction is monitored by the oscilloscope. The waveform
is shown in Figure 6.4. The decoded transaction matches the expected
transaction—reading 8 bytes starting from the address 0x08 that matches the
previously written values, showing the operations are actually performed on
the electrical level.

1 root@mercury -xu5 -1:~# ./top -down -c1 -gpio
2 Read command: r <addr_in_eeprom > <length >
3 Write command: w <addr_in_eeprom > <data0 > <data1 > ...
4 > r 0x06 1
5 [CWorld Init] res: ME_RES_IDLE
6 [CWorld] res: ME_RES_OK [0]1
7 > r 0x06 8
8 [CWorld] res: ME_RES_OK [0]1 [1]2 [2]3 [3]4 [4]5 [5]6 [6]7 [7]8
9 > w 0x06 11 22 33 44 55 66 77 88

10 [CWorld] res: ME_RES_OK
11 > r 0x06 8
12 [CWorld] res: ME_RES_OK [0]11 [1]22 [2]33 [3]44 [4]55 [5]66

[6]77 [7]88
13 > w 0x07 255 254 253 252 251 250
14 [CWorld] res: ME_RES_OK
15 > r 0x08 8
16 [CWorld] res: ME_RES_OK [0]254 [1]253 [2]252 [3]251 [4]250 [5]88

[6]9 [7]10

Figure 6.3: Manual validation of the top-down controller stack. Lines starting with > are
input commands. ME_RES_OK is the return value from the top layer, indicating the operation
is done successfully. For read operations, the returned data array follows, where the numbers
in [] are indices into the data buffer.

From the results, we can conclude that the top-down bit-banging driver
functions correctly in accordance with the input instructions (a more compre-
hensive test requires more test cases).
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Figure 6.4: Captured waveform of the last write operation (Line 13) of Figure 6.3. The yellow
signal is SCL. The green signal is SDA. Decoded values are shown in hexadecimal. W: write.
R: read. a: ACKnowledged. S: restart.

6.2.2 Timing

To get a more comprehensive understanding of the overhead imposed by
the bit-banging GPIO driver through Linux sysfs, we modify the code by
removing all manually inserted delays and measured the I2C transaction
time. Furthermore, the test program issues commands in sequence one after
another, eliminating the time spent on user interactions.

The test program issues 200 identical read commands. Each command reads
8 bytes starting from address 0x06. The Linux built-in command time is used
to measure the execution time.

Issuing the 200 read commands takes 11.3 seconds on average across 3
runs without significant differences between runs. Time spent in the user
space accounts for 2.2s, 19.6%, while time spent in the kernel is 9.1 s, 80.4%.
Figure 6.5 illustrates the time breakdown. Figure 6.6 shows the captured
waveform of the first few symbols of a transaction. The delay of a bit-
banging operation is roughly 125 us by observing the first few cycles. The
corresponding maximum clock cycle is 250 us (a cycle consists of a rising
edge and a falling edge), or 4 kHz in terms of frequency, far lower than the
target frequency of 400 kHz. The actual transmission frequency is even lower
since SCL is not flipped on every operation in the Electrical layer. There
can be consecutive high or low signals issued from the Symbol layer to the
Electrical layer.

Such a result indicates that bit-banging through the Linux sysfs indeed
imposes a significant overhead, preventing the generated driver from reaching
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Figure 6.5: Time breakdown of issuing the 200 read commands using the bit-banging driver.

Figure 6.6: Captured waveform of the first few symbol of a transaction with the optimized
bit-banging driver. The yellow signal is SCL. The green signal is SDA.

the target speed. We do not further invest the time breakdown, due to
limited tools on the OpenBMC distribution running on the BMC module,
which has neither profiling tools like perf or compilers to compile them.
More importantly, accessing GPIO through Linux sysfs has been deprecated.
The current recommended approach is using the new user-space GPIO
APIs. Alternative driver design, the combined software-hardware drivers we
discuss next, is also an approach to avoid the overhead of the bit-banging
driver.
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6.3 Combined Software-Hardware Drivers

With the whole system compilation, Efeu is able to generate combined
software-hardware drivers. Specifically for the I2C stack, we evaluate multiple
drivers by choosing a split point between layers, putting the bottom part into
hardware and the top part into software. We present the measurements on
the timing of I2C transactions in Subsection 6.3.1 and FPGA utilization in
Subsection 6.3.2.

FPGA utilization is affected by optimizations involved in the pipeline. In
Subsection 6.3.3, we present evaluations on the effect of two optimizations:
the LLVM optimization passes and the Xilinx Vivado FSM optimization. We
also compare the result with the driver generated in the previous work [27]
as the baseline.

For completeness, we also perform the same evaluations on the Xilinx I2C
IP in the FPGA design plus the Xilinx bare metal driver in software. The
Xilinx I2C IP functions at an abstraction level similar to the Transaction layer
in our stack, supporting sending variable-length transactions to the specified
address. It also features additional functions like FIFO and interrupts, which
are not supported by our I2C stack. All drivers operate the I2C bus at the
High Speed Mode (400 kHz).

While splitting drivers into a high-level part and a low-level part adheres to
common practice, Efeu provides flexibility far beyond these configurations.
As a demonstration, we show a configuration that crosses the software-
hardware boundary multiple times in Subsection 6.3.4.

6.3.1 Timing

Choosing the split point between software and hardware has an impact
on the timing of I2C transactions. In this experiment, we measure the I2C
transaction timing at the electrical level using the oscilloscope.

With each combined software-hardware driver, EEPROM operations are
issued from the software side. Read operations with two different lengths
are used for testing. The experiment is performed on the platform discussed
previously. The two read lengths are 16 bytes and 1 byte. Each read command
is repeated 3 times. We use the oscilloscope to plot waveforms of SCL and
SDA (e.g. Figure 6.7). The oscilloscope is triggered at the start of the first
operation and records long enough to the end of the last operation. Gaps
between the three operations are identified by observing the bus being idle
for a certain amount of time, and therefore the start and end times of each
operation are recognized. The elapsed time is calculated as the average of
the three operations.
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Figure 6.7: Plot waveforms of three consecutive operations of reading 16 bytes, using combined
software-hardware driver split between Transaction and Byte. Gaps between operations are
observable and identifiable by setting a threshold. The yellow signal is SCL. The green signal
is SDA. Decoded values are shown in hexadecimal. W: write. R: read. a: ACKnowledged. S:
restart.

Figure 6.8 shows the average elapsed time of reading 16 bytes. The Xilinx IP
takes the least amount of time. For our drivers, the elapsed time decreases
as we lower the stack into hardware. With the whole stack in FPGA (split
point EepDriver), the generated driver yet takes 1.58× time for the operation
compared to Xilinx IP. Reading 1 byte shows a similar trend, as shown in
Figure 6.9.

The difference between Xilinx IP and EepDriver can be explained by the
different encodings of BIT 0 and BIT 1. By observing the first few symbols
sent by the Xilinx IP (Figure 6.10) and EepDriver (Figure 6.11), we can see that
the Symbol layer is very conservative in the encoding. There is a stretching
cycle after the start symbol, and each BIT 0 and BIT 1 takes two more cycle
for encoding. Such behavior matches the ESM source code of the Symbol
layer (we make minimal changes when porting the specification to Efeu). The
specification uses such conservative encodings for reliability and possibly to
accommodate non-compliant devices. Due to the time constraint, we do not
investigate the effect of removing these redundant cycles. However, there is
certainly a space for timing optimization.

Regarding the timing difference with different split points, one can compare
the waveform of Electrical and EepDriver in Figure 6.12. Both plots are
zoomed at the same scale and aligned in time. We can observe that the
waveform of Electrical is more sparse, which can be explained by the over-
head of handshaking crossing the software-hardware boundary. In hardware,
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Figure 6.8: Average elapsed time of reading 16 bytes. The split point is the topmost layer in
hardware, whose upper layer is the bottommost layer in software.
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Figure 6.9: Average elapsed time of reading 1 byte. The split point is the topmost layer in
hardware, whose upper layer is the bottommost layer in software.
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Figure 6.10: First few symbols of Xilinx IP when performing EEPROM read operations.

Figure 6.11: First few symbols of EepDriver when performing EEPROM read operations.
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data and valid signals are supplied in the same clock cycle. In contrast,
when emulating the handshaking with AXI Lite-based registers, each write
to a data register or the valid register takes one cycle. If the time when the
software issues the write request does not match the FPGA clock boundary,
the process takes even more cycles. As a consequence, more frequent commu-
nication across the software-hardware boundary results in more time spent
at handshaking.

Figure 6.12: Waveforms of Electrical vs EepDriver. Both plots are scaled at 100us and aligned
in time. Yellow signal is SCL. Green signal is SDA. Decoded values are shown in hexadecimal.
W: write. R: read. a: ACKnowledged. S: restart.

Between layers where a small amount of data is transmitted, like between
Symbol and Electrical layer, using compact data types (for example, use a
single bit instead of 32-bit integer for SCL and SDA) and packing data and/or
valid/ready signal into AXI Lite registers may help mitigate such overhead.

6.3.2 FPGA Resource Utilization

In this subsection, we present the FPGA resource utilization of the combined
software-hardware drivers with different split points. We focus on the two
main resources on FPGA, Look-Up Tables (LUTs) and Flip-Flops (FFs).

The drivers are implemented with Xilinx Vivado 2020.1 to the PL of ZynqMP
Ultrascale+ MPSoC. The usage data is extracted from the Vivado report by
including only the relevant components.

LUT and FF usages are shown in Figure 6.13 and Figure 6.14 respectively.
Comparing the Xilinx IP with the generated driver at a similar abstraction
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Figure 6.13: LUT usage with different software-hardware split points. The split point is the
topmost layer in hardware, whose upper layer is the bottommost layer in software. "Others"
is calculated as total minus the sum of the listed parts, which includes the I2C clock divider
and possibly other small parts.
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level—Transaction, the LUT usage of the generated driver is 4.35× and the
FF usage is 7.80×.

In terms of absolute numbers, the generated drivers take much more re-
sources compared to the Xilinx I2C IP. Note that the Xilinx IP provides more
sophisticated functionalities like interrupt and FIFO, so the comparison is
already biased toward the generated drivers. In terms of the relative amount
compared to the available resource on the FPGA (117120 LUTs, 234240 FFs),
Xilinx IP takes 0.331% and 0.160% of the total available amounts respectively,
while Transaction takes 1.26% and 1.25%, which are all small amounts.

There is a reasonable space for utilization optimizations in the generated
drivers. For example, retaining the original specification, the current ESM
specification still uses 32-bit integers for all data fields in the stack, even
for 1-bit SCL and SDA signals and 8-bit byte payload. Even though Vivado
is capable of optimizing unused registers away, exploring the possibilities
remains as future work.

As a side note, as the split point moves up along the stack, we can see the
resource usage of low layers decreases in Figure 6.13 and Figure 6.14. For
example, the Symbol layer takes 152 LUTs when the split point is Symbol,
but only takes 85 LUTs when the split point is Byte. We believe the un-
derlying reason is Vivado performing cross-boundary optimization among
components.

6.3.3 Effect of Optimizations

By choosing the LLVM IR as the input for the HDL backend, ESMC reuses the
existing LLVM optimization passes. By default, O2 optimization is applied.
In this subsection, we present the evaluation result on the effect of LLVM
optimizations, as well as another optimization involved in the pipeline–
the Xilinx Vivado FSM auto state encoding (discussed in Section 2.5). For
completeness, we also present the resource usage of the hardware driver
from Störzbach’s work [27] when implemented on the current evaluation
platform (different from the one reported in the work).

We use the EepDriver split point generated with the default configuration
(LLVM O2, Vivado FSM optimization enabled) as the baseline. Subsequently,
the LLVM optimization and the FSM optimization are disabled respectively.
For Störzbach’s driver, we take the code generated by the original compiler,
plug it in the current FPGA design, and implement the design for the new
BMC platform.

For timing, we do not observe significant differences between the default
configurations and those with the optimization disabled. In terms of the
FPGA resource utilization, Figure 6.15 and Figure 6.16 show the LUT and
FF usages respectively. With LLVM optimization enabled, the LUT usage
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Figure 6.15: LUT usage with different configurations. Parts outside the I2C stack are omitted
for brevity .
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decreases by 31.5%. In contrast, FF usage decreases only by 0.687%. If using
the previous work as the baseline, the generated driver reduces the LUT and
FF usages by 36.4% and 24.2% of those the previous work. On the other
hand, the Vivado FSM optimization increases both LUT and FF usage by a
small amount.

Comparing EepDriver and No LLVM Opt, which varies only by if the LLVM
optimizations are enabled, we can reach the conclusion that LLVM opti-
mizations help reduce the resource usages. The effect on the LUT usage is
significant, while the FF usage is less affected. On the other hand, the Vivado
FSM optimization has a limited effect on the resource usage of the driver.
The result is expected since that optimization is designed to optimize the
state computing paths rather than the resource utilization.

When comparing with the previous work, we can see that the Efeu-based
driver takes less resources. However, note that there are multiple variables
that have changed: the compiler is completely changed, and the specification
is slightly changed when migrating from the original DSL to ESM. Therefore,
little conclusion can be be drawn from this observation.

There are multiple optimization passes in the LLVM O2 configuration. Isolat-
ing their individual effects remains a future work.

6.3.4 Crossing the Software-Hardware Boundary Multiple Times

So far, we focus on splitting the I2C stack into two parts, with the high-level
part implemented in software and the low-level part in hardware. While it is
the typical design for combined software-hardware drivers, Efeu is far more
flexible. As a demonstration, we design, implement, and evaluate a driver
that cross the software-hardware boundary multiple times.

Figure 6.17 shows the architecture of the system. The top-level entry point
(World layer) is in the software domain. The EepDriver lies in hardware.
Subsequently, the Transaction layer is implemented again in software as
another program. The remaining layers are again in hardware as another IP.

Implementing such a structure with the whole system compilation requires
little work: the user simply configures multiple C/HDL components. The
hierarchy of the output products by the ESMC is shown in Figure 6.18. For
component 2, the layer has two MMIO-AXI Lite interfaces, one connected to
the upstream and the other to the downstream, thereby there are two VHDL
files describing the two interfaces. Similarly, for component 3, there are two
C files describing its interfaces.

The components are compiled and deployed to the test platform described
above. We validate the design with manual tests. Figure 6.19 shows the log.
The output is expected, indicating the system works given the user inputs.
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World
(Library Entry)

EepDriver
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Byte Symbol I2C

Program 1 Program 2

IP 1 IP 2

Software

Hardware

Figure 6.17: Architecture of a system crossing the software-hardware boundary multiple
times. Boilerplate modules are omitted.

/
1-World-SW

1-World-SW.c
CWorld-CEepDriver-axilite.c
Makefile

2-EepDriver-HW
2-EepDriver-HW.v
CTransaction-CEepDriver-axilite.vhd
CWorld-CEepDriver-axilite.vhd

3-Transaction-SW
3-Transaction-SW.c
CTransaction-CByte-axilite.c
CTransaction-CEepDriver-axilite.c
Makefile

4-Byte-HW
4-Byte-HW.v
CTransaction-CByte-axilite.vhd

Figure 6.18: Directory hierarchy of the output product. Prefix "C" before layer names indicates
"Controller".
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1 root@mercury -xu5 -1:~# ./snack -Transaction -SW &
2 [1] 316
3 [CTransaction] Start
4 root@mercury -xu5 -1:~# ./snack -World -SW
5 Read command: r <addr_in_eeprom > <length >
6 Write command: w <addr_in_eeprom > <data0 > <data1 > ...
7 > r 0x06 1
8 [CWorld Init] res: ME_RES_IDLE
9 [CTransaction] TR_ACT_WRITE , addr = 50, length = 2

10 [CTransaction] TR_ACT_READ , addr = 50, length = 1
11 [CTransaction] TR_ACT_STOP , addr = 0, length = 0
12 [CWorld] res: ME_RES_OK [0]1
13 > r 0x06 8
14 [CTransaction] TR_ACT_WRITE , addr = 50, length = 2
15 [CTransaction] TR_ACT_READ , addr = 50, length = 8
16 [CTransaction] TR_ACT_STOP , addr = 0, length = 0
17 [CWorld] res: ME_RES_OK [0]1 [1]2 [2]3 [3]4 [4]5 [5]6 [6]7 [7]8
18 > w 0x07 255 254 253 252
19 [CTransaction] TR_ACT_WRITE , addr = 50, length = 6
20 [CTransaction] TR_ACT_STOP , addr = 0, length = 0
21 [CWorld] res: ME_RES_OK
22 > r 0x08 8
23 [CTransaction] TR_ACT_WRITE , addr = 50, length = 2
24 [CTransaction] TR_ACT_READ , addr = 50, length = 8
25 [CTransaction] TR_ACT_STOP , addr = 0, length = 0
26 [CWorld] res: ME_RES_OK [0]254 [1]253 [2]252 [3]6 [4]7 [5]8 [6]9

[7]10

Figure 6.19: Manual validation of the system. Lines starting with [CTransaction] ("C"
indicates "Controller") are printed by program snack-Transaction-SW. Commands to Trans-
action start with TR_ACT_, followed by the target I2C address (0x50 in this case) and length of
the payload. Lines starting with [CWorld] are printed by program snack-World-SW. Lines
starting with > are user input commands. ME_RES_OK is the return value from the top layer
(CWorld), indicating the operation is done successfully. For read operations, returned data
array follows, where the numbers in [] are indices into the data buffer.
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Chapter 7

Discussion

7.1 Applications on BMC Firmware and Beyond

In this work, we demonstrate using Efeu to generate highly-assured and
flexible I2C device drivers. By design, Efeu is not limited to the I2C stack, but
applicable to systems that can be modeled as modules with synchronous com-
munications in between. In addition to I2C , other communication protocols
used in embedded systems or baseboard management, can possibly benefit
from Efeu, including Serial Peripheral Interface (SPI) [12], Controller Area
Network (CAN) [30], Intelligent Platform Management Interface (IPMI) [17].
Similar to I2C , these protocols define abstraction layers in their respective
specifications, which possibly well align with the programming model of
Efeu.

On the other hand, the I2C stack can also be extended vertically. For instance,
The System Management Bus (SMBus) [9] is a protocol built on I2C , provid-
ing abstractions dedicated to system management. Enzian BMC uses SMBus
to manage several components. To extend the stack to encompass SMBus, ad-
ditional abstraction layers need to be modeled as Efeu layers. Looking ahead,
one can envision extending the stack further upward to the BMC firmware
control logic, such as the feedback control loop from CPU temperature to fan
speeds.

While we employ a specific test platform in this work (Linux, ARMv8-based
CPU, Xilinx FPGA), Efeu is designed with portability in mind. For example,
to migrate the software drivers from Linux to seL4, only the boilerplate code
like the MMIO driver needs to be adapted. The C code generated by Efeu is
portable by nature and does not require any manual adaptation.
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7.2 How Verifiers Help

When migrating the I2C stack specification from the original DSL to ESM,
we leverage the existing verifiers as a tool for testing and debugging. In this
section, we report one of the datapoints where the verifier reports errors,
indicating problems in the driver. It serves as an example of how the verifiers
help identify issues early in the development process.

In a version of controller EepDriver specification, a read action that should
be issued to the downstream layer, Transaction, is missing (in the ESM
code, talkTransaction(TR_ACT_READ)). In other words, the read request
never reaches the Transaction layer but vanishes. The verifier for EepDriver
reports "invalid end state (at depth 942)", indicating the Transaction layer
keeps waiting. After fixing the bug, the error is resolved. This datapoint
demonstrates how model checking helps prevent errors from going into
production at an early stage of development.

7.3 Future Work

While Efeu provides a complete pipeline for designing and implementing
highly assured drivers like I2C , it does come with certain limitations. In this
section, we discuss the possible improvement to the current Efeu implemen-
tation as future work.

Formalization and Extension of the C Backend By leveraging C function
calls and continuations, the current C backend provides a way to implement
the read and talk operations with little overhead. However, the validity of
this implementation has not been formalized. While the generated drivers
work in our tests on real-world devices, the generated C code has a different
semantics than the ESM specification: functions are not concurrent processes.
Furthermore, there can possibly be systems that can be modeled with the
semantics of concurrent processes, but not with C functions. Whether the
two semantics are equivalent in limited conditions remains to be proved in
future work.

Without diving into the formality, we briefly discuss a possible direction of
such a proof. It is possible that the execution order of the C functions is one
of the valid execution orders of the concurrent processes. In other words,
with the function calls and continuations, the C backend implicitly performs
a valid static scheduling on the processes. This property may only hold with
some properties or conditions. For the I2C stack, passing the model checking
ensures it is free of deadlocks and livelocks. If this is a necessary property to
validate the C backend, the end user should be informed.
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Last but not least, currently the C backend only supports calling trees–a
layer can directly call multiple layers, but a reachable layer has one and
only one caller. This constraint limits the C backend to be only capable
of implementing a subset of systems allowed by the ESM specification.
Implementing additional scheduling approaches, such as using threads to
implement layers, remain as future work.

Interfaces with Dynamic Lengths Currently, Efeu only allows arrays with
fixed sizes. With this limitation, users must declare arrays large enough to
accommodate the maximum possible payload size, resulting in unnecessary
data movement, latency, and resource usage. Currently, the I2C stack supports
payloads up to 16 bytes, which is sufficient for EEPROM. However, if the stack
is extended to the SMBus protocol, the maximum payload size that needs to
accommodate boosts to 256 bytes [9]. Implementing such an interface with
the existing design is highly inefficient.

Features While The current Efeu programming model and the ESM lan-
guage are sufficient for implementing the I2C driver, there are yet several
possible extensions to allow it to model more complicated systems. For in-
stance, asynchronous communication mechanisms could be a useful feature.
Channels with fixed-size queues are natively supported by Promela and have
corresponding implementations in C and HDL. For ESM language, additional
features can help improve usability for end users. For instance, while layer
functions are the only allowed functions in ESM currently, helper functions
can be allowed as long as they can be inlined by Clang/LLVM.

More Ways to talk Backends in Efeu essentially implement the read and
talk operations in different ways: calls and continuations between layers in
C, in-module handshaking between layers in HDL, and the MMIO AXI Lite
interface for layers crossing the software and hardware boundary. In addition
to these, one can envision more ways to talk. For example, there can be
a way to talk between applications through inter-process communication
mechanisms. Alternatively, there can be a way to talk between a VM and
seL4 through some virtual device. With this backend, the user can isolate
a part of the system in the VM, while implementing the trusted part as a
native seL4 application.
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Chapter 8

Conclusion

This work details Efeu, a framework for designing drivers for model checking
and integrated software-hardware implementations. We demonstrate its
usage on a model-checked I2C stack. With the stack specified with Efeu’s
DSLs—ESM and ESI, Efeu can then translate the specification to various
output products based on users’ instructions. The Promela backend generates
Promela specification of the stack, which can be used for model checking
with the SPIN model checker. The C backend emits C code for software
driver implementations. The HDL backend generates drivers in HDL that
can be used to implement hardware drivers. Built upon these backends,
the whole system compilation further enables the user to create combined
software-hardware drivers, with the user freely choosing the split point
between software and hardware components. The generated drivers are
evaluated on real-world devices.

Looking forward, we envision extending Efeu with additional features, al-
lowing it to model more complicated systems. We believe the success of the
I2C stack can be transferred to other communication protocols and other
components built on top of I2C , toward a highly-assured BMC firmware
stack.
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Appendix A

Complete ESI of the I2C Stack

The complete ESI of the I2C stack, including both the controller and the
responder, is shown below. The "C" prefix indicates "Controller" and the "R"
prefix indicates "Responder".

1 layer CElectrical;
2 layer CSymbol;
3 layer CByte;
4 layer CTransaction;
5 layer CEepDriver;
6 layer CWorld;
7
8 interface <CElectrical , CSymbol > {
9 => {

10 i32 scl;
11 i32 sda;
12 },
13 <= {
14 i32 scl;
15 i32 sda;
16 },
17 };
18
19 interface <CSymbol , CByte > {
20 => {
21 i32 sym;
22 },
23 <= {
24 i32 sym;
25 },
26 };
27
28 interface <CByte , CTransaction > {
29 => {
30 i32 res;
31 i32 data;
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32 },
33 <= {
34 i32 action;
35 i32 data;
36 }
37 };
38
39 interface <CTransaction , CEepDriver > {
40 <= {
41 i32 action;
42 i32 addr;
43 i32 length;
44 i32 data [16];
45 },
46 => {
47 i32 res;
48 i32 length;
49 i32 data [16];
50 }
51 };
52
53 interface <CEepDriver , CWorld > {
54 <= {
55 i32 action;
56 i32 addr;
57 i32 length;
58 i32 data [16];
59 },
60 => {
61 i32 res;
62 i32 data [16];
63 }
64 };
65
66 layer RElectrical;
67 layer RSymbol;
68 layer RByte;
69 layer RTransaction;
70 layer REepDriver;
71 layer RWorld;
72
73 interface <RElectrical , RSymbol > {
74 => {
75 i32 scl;
76 i32 sda;
77 },
78 <= {
79 i32 scl;
80 i32 sda;
81 },
82 };
83
84 interface <RSymbol , RByte > {
85 => {
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86 i32 sym;
87 },
88 <= {
89 i32 sym;
90 },
91 };
92
93 interface <RByte , RTransaction > {
94 => {
95 i32 res;
96 i32 data;
97 },
98 <= {
99 i32 action;

100 i32 data;
101 }
102 };
103
104 interface <RTransaction , REepDriver > {
105 <= {
106 i32 action;
107 i32 data;
108 },
109 => {
110 i32 res;
111 i32 data;
112 }
113 };
114
115 interface <REepDriver , RWorld > {
116 <= {
117 i32 action;
118 i32 length;
119 i32 data [16];
120 },
121 => {
122 i32 res;
123 i32 addr;
124 i32 length;
125 i32 data [16];
126 }
127 };
128
129 layer ElectricalBus2;
130
131 interface <CElectrical , ElectricalBus2 > {
132 => {
133 i32 scl;
134 i32 sda;
135 },
136 <= {
137 i32 scl;
138 i32 sda;
139 },
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140 };
141
142 interface <RElectrical , ElectricalBus2 > {
143 => {
144 i32 scl;
145 i32 sda;
146 },
147 <= {
148 i32 scl;
149 i32 sda;
150 },
151 };
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GPIO Bit-Banging Driver Through
Linux sysfs

The GPIO bit-banging driver from the previous work [14, 15] is shown below.
The code is reformatted for clarity. Lines with "MANUAL DELAY" are pre-
served when validating the functionality of the bit-banging software drivers
in Section 6.1 and Subsection 6.2.1, but removed in Subsection 6.2.2.

1 #include <assert.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <string.h>
5 #include <time.h>
6 #include <unistd.h>
7 #define SDA_PIN 486
8 #define SCL_PIN 487
9

10 static void set_direction(int pin , const char *direction) {
11 FILE *f;
12 char fn [128];
13 snprintf(fn , sizeof(fn), "/sys/class/gpio/gpio%d/direction",

pin);
14 f = fopen(fn, "w");
15 assert(f);
16 fprintf(f, "%s", direction);
17 fclose(f);
18 }
19
20 static int get_value(int pin) {
21 FILE *in;
22 char fn [128];
23 snprintf(fn , sizeof(fn), "/sys/class/gpio/gpio%d/value", pin);
24 in = fopen(fn , "r");
25 assert(in);
26 int val;

90



B. GPIO Bit-Banging Driver Through Linux sysfs

27 int conversions = fscanf(in, "%d", &val);
28 assert(conversions == 1);
29 fclose(in);
30 return val;
31 }
32
33 static void ms_sleep(int ms) { usleep(ms * 1000); }
34
35 static void i2c_set_pin(int pin , int val) {
36 // If val == 1 -> high impedance output
37 // If val == 0 -> drive low
38 if (val) {
39 set_direction(pin , "in");
40 } else {
41 set_direction(pin , "low");
42 }
43 }
44
45 void i2c_send(int scl , int sda) {
46 ms_sleep (2); // MANUAL DELAY
47 if (scl) {
48 // Avoid generating spurious start/stop
49 i2c_set_pin(SDA_PIN , sda);
50 ms_sleep (2); // MANUAL DELAY
51 i2c_set_pin(SCL_PIN , scl);
52 } else {
53 i2c_set_pin(SCL_PIN , scl);
54 ms_sleep (2); // MANUAL DELAY
55 i2c_set_pin(SDA_PIN , sda);
56 }
57 }
58
59 void i2c_recv(int *scl , int *sda) {
60 ms_sleep (5); // MANUAL DELAY
61 *scl = get_value(SCL_PIN);
62 *sda = get_value(SDA_PIN);
63 }
64
65 void i2c_init () {
66 FILE *f;
67
68 f = fopen ("/sys/class/gpio/export", "w");
69 assert(f);
70 fprintf(f, "%d\n", SCL_PIN);
71 fclose(f);
72
73 f = fopen ("/sys/class/gpio/export", "w");
74 assert(f);
75 fprintf(f, "%d\n", SDA_PIN);
76 fclose(f);
77
78 i2c_set_pin(SDA_PIN , 1);
79 i2c_set_pin(SCL_PIN , 1);
80 }
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Acronyms

APU Application Processing Unit.

AST Abstract Syntax Tree.

BMC Baseboard Management Controller.

CPU Central Processing Unit.

DSL Domain-Specific Language.

EDA Electronic Design Automation.

EEPROM Electrically Erasable Programmable Read-Only Memory.

FF Flip-Flop.

FIFO First-In-First-Out.

FPGA Field Programmable Gate Array.

FSM Finite State Machine.

GPIO General-Purpose Input/Output.

HDL Hardware Description Languages.

HLS High-Level Synthesis.

IDE Integrated Development Environment.

IR Intermediate Representation.
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Acronyms

LSB Least Significant Bit.

LUT Look-Up Table.

MMIO Memory-Mapped Input/Output.

MSB Most Significant Bit.

OS Operating System.

PL Programming Logic.

RAM Random-Access Memory.

SoC System-on-Chip.

SSA Static Single-Assignment.

VM Virtual Machine.
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