
Semester Project

Systems Group, Department of Computer Science, ETH Zurich

Enzian Firmware Resource Interface

by

Pengcheng Xu

Supervised by

Daniel Schwyn
Prof. Dr. Timothy Roscoe

February 2023

Abstract

We introduce the design and implementation of the Enzian Firmware
Resource Interface (EFRI), an RPC-based protocol for flexible and exten-
sible enumeration and implementation of platform-level firmware services.
We first formulate the requirements of a firmware-resource protocol on het-
erogeneous platforms. We then show the detailed design of EFRI against
existing industrial standards. Finally, with the help of a few case stud-
ies, we evaluate the performance and ease of implementation of standard
firmware services in EFRI.

1

Enzian Firmware Resource Interface
Pengcheng Xu

February 23, 2023

Contents
1 Introduction 3

2 Background and Motivation 3
2.1 Enzian . 3
2.2 Existing Firmware Protocols . 4
2.3 Motivation . 7

3 Protocol Design 8
3.1 Basic Concepts . 8
3.2 Namespacing and Resource Discovery 9
3.3 Security and Virtualisation . 9
3.4 Asynchronous Event Mechanism 11
3.5 Symmetric Client/Actor Design 11

4 Implementation 12
4.1 The schema compiler . 13
4.2 CPU . 14
4.3 BMC . 19
4.4 FPGA . 20

5 Evaluation 20
5.1 Case studies . 20
5.2 Performance . 22

6 Discussion 23

7 Conclusion 24

A Overview of the ThunderX Boot Process on Enzian 28

B Code Listings 29

C Locations of Implementation 35

2

1 Introduction
Platform-level management tasks are crucial for real-world computer systems,
to keep them running safely and efficiently, and to perform maintenance and
introspection tasks. Some of these tasks are performed by the Baseboard Man-
agement Controller (BMC) [Frazelle(2020), Ottaviano et al.(2022)], while some
others in the platform firmware [Muralidhar et al.(2012), Herdt et al.(2017)].
There exist various industrial standards that regulate how the CPU communi-
cates with the platform firmware and the BMC to perform these management
tasks [UEFI Forum Inc.(2022a), DMTF(2022), Arm Limited(2022b)].

CPU/FPGA-based heterogeneous computing systems have been proposed
early on [Agron et al.(2006), Andrews et al.(2004)] and are recently gaining
more research attention [Belwal et al.(2015), Iorga et al.(2021), Cock et al.(2022)].
On the other hand, the aforementioned industrial standard protocols keep the
traditional view of a CPU-centric system and mostly fail to address such het-
erogeneity. While it is possible to retrofit these protocols to account for such
modern heterogeneous systems to some degree, the system designer is often met
with poor design choices, rigid protocol requirements, and difficult-to-obtain
standards and reference implementations. We need a protocol designed natively
for heterogeneous systems with research in mind.

In this article, we introduce the design and implementation of the Enzian
Firmware Resource Interface (EFRI). We first introduce in Section 2 several tra-
ditional industrial solutions for platform-level firmware protocols and formulate
the requirements of such protocols, showing that they are insufficient in one or
more of the criteria. We then detail the design of EFRI according to the require-
ments of such a protocol in Section 3. We discuss a reference implementation
of EFRI on an Enzian system in Section 4. Finally, in Section 5.1, we evaluate
the ease of use of EFRI by end-users to perform platform-level tasks, as well as
system integrators to implement firmware functionality. We also evaluate the
overall performance of the protocol implementation in Section 5.2.

2 Background and Motivation
2.1 Enzian
Enzian [Cock et al.(2022)] is a heterogeneous system designed to support hy-
brid systems research. It consists of a server-grade Arm ThunderX-1 CPU and
a large Xilinx XCVU9P FPGA, interconnected by the Enzian Coherent Inter-
connect (ECI) link. In addition, the system is equipped with ample high-speed
interconnect resources, ranging from 100 Gb/s Ethernet to PCIe and NVMe
links on both the CPU and FPGA side. A block diagram of Enzian is shown in
Figure 1.

An especially interesting aspect of the design of Enzian is the Baseboard
Management Controller (BMC) which is open for programming by the system
developer. Conventional server systems offer extremely locked-down BMC in-

3

EATX Board

4x DDR
128 GiB @ 2133

48x ARMv8-A
underX-1

Processor

4x DDR
512 GiB @ 2133
64 GiB @ 2400

Xilinx
XCVU9P

FPGA
ECI

NVMe 4x

NVMe 4x

NVMe 4x

PCIe 8x

SATA3 4x

NVMe 4x

FMC

PCIe 16x

IO Shield

QSFP+

QSFP+

IO Shield

QSFP+

QSFP+

QSFP+

QSFP+

Figure 1: Block diagram of Enzian.

terfaces, usually providing only certain management functionalities. On hetero-
geneous platforms with an FPGA, the user may choose to implement platform-
level services that ideally should be exposed via the BMC in a trusted and
reliable fashion. This is made possible with the ability Enzian provided to fully
customise the software that runs on the BMC.

2.2 Existing Firmware Protocols
Generally speaking, firmware is a class of software that provides low-level control
for a device’s hardware. It is increasingly common to implement platform-level
application-agnostic services, such as power control, telemetry data collection,
real-time clock (RTC), etc., in the system firmware. This makes the design of the
protocol between the various clients that make use of such services, and actors
that provide such services, crucial for a good platform design. We introduce
here several existing industrial-standard firmware protocols and analyse their
strengths and weaknesses for heterogeneous platforms.

UEFI/ACPI The Unified Extensible Firmware Interface (UEFI) [UEFI Forum Inc.(2022b)]
is a set of specifications written by the UEFI Forum. As a successor to the Basic
Input/Output System (BIOS), it provides a rich set of boot services to facilitate
the process of booting an operating system. In addition, it also provides a set
of runtime services such as UEFI variables, ACPI (for power control), SMBIOS
(for system topology information), and GOP (for graphics output). The run-
time services remain available to be invoked by the operating system after the
boot process completes. Open-source implementations of the UEFI and ACPI
standards include TianoCore EDK II [The TianoCore Community(2021)] and
U-Boot [The U-Boot Development Community(2021)].

The Advanced Configuration and Power Interface (ACPI) [UEFI Forum Inc.(2022a)]
defines a set of interfaces for the operating systems to perform power manage-

4

ment operations as well as device auto-configuration and monitoring, for ex-
ample, Plug and Play and hot swapping. The interfaces are exposed to the
operating system as various ACPI tables in a compact byte-code format called
the ACPI Machine Language (AML), compiled from the human-readable ACPI
Source Language (ASL) [OSDev Wiki(2023)]. Together with UEFI, they are
widely adopted by a vast majority of computer systems, from PCs to server
systems. They also form the basis of firmware requirements in the Arm Server
Base System Architecture (SBSA) [Arm Limited(2022a)].

Despite their wide adoption across the industry, they are not very well suited
for heterogeneous research platforms due to the rigidity of standards, not de-
signed for extensions by system designers. The ACPI tables in AML format are
also notoriously difficult to examine and experiment with, due to the compact
AML format and limitation of 4-byte identifiers. In addition, the UEFI/ACPI
standards have mostly matured with the x86 PC market, with no history with
emerging architectures such as ARM and RISC-V [Corbet(2014)] and thus less
experience overall. These all make the UEFI/ACPI standards unsuitable for a
new research platform like Enzian.

IPMI The Intelligent Platform Management Interface (IPMI) [Intel et al.(2013)]
specifies a computer subsystem, mainly running on the BMC, that provides
platform-level out-of-band management (OOB) and monitoring capabilities. Com-
mon features include Field Replaceable Unit (FRU) identification, power con-
trol, sensor data acquirement, and virtual storage devices for remote OS in-
stallation. In-band management is often also available over SMBIOS and/or
ACPI tables and used to implement platform actions such as power off from
the OS [Minyard(2023)]. The standard is adopted by many server manufac-
turers, including HP [Hewlett Packard Enterprise Development LP(2023)], Dell
[Dell Inc.(2023)], and Cisco [Cisco Systems Inc.(2020)]. Open-source BMC dis-
tributions such as OpenBMC [The OpenBMC Community(2023)] have IPMI
implementations.

The IPMI standards unfortunately did not have a mechanism for discovering
available actions. Messages are grouped via the so-called NetFn/LUN/Cmd tu-
ples [The OpenBMC Community(2022a)], with no standard way at runtime to
enumerate the possible actions to perform. The namespaces of messages are thus
limited to a flat ID-based grouping, which does not scale well to complex sys-
tems with different levels of hierarchy. While standard actions are documented
in the specification, OEM commands from different vendors have completely
different syntaxes and semantics. With some vendors that do not publicly doc-
ument their OEM commands, system administrators have to resort to sending
raw commands, often protected by Non-Disclosure Agreements (NDA). This sit-
uation makes designing and implementing new platform features that are easy
to explore and discover by end-users difficult and ad-hoc.

Arm SCMI The System Control and Management Interface (SCMI) by Arm
[Arm Limited(2022b)] is a standard specifying interfaces for power, performance

5

and system management for ARM System-on-Chips (SoC). The standard is de-
signed with the Linux device tree model in mind, allowing the firmware running
on the System Control Processor (SCP) to serve as providers for standard re-
sources such as clock (for Dynamic Voltage and Frequency Scaling, DVFS), re-
set, sensors and performance domains. The SCP could be implemented as part
of the ARM secure world firmware running at EL3 (the monitor exception level),
or a standalone BMC on the platform. The client-side implementation of SCMI
is open-source and integrated into the Linux kernel, while the server-side imple-
mentations are in the open-source Trusted Firmware-A [Arm Limited(2022d)]
and SCP firmware [Arm Limited(2022c)] codebase.

As a standard proposed by Arm, SCMI targets SoC platforms with clear
role delegations: the Application Processor (AP) and devices are the agents
and the platform controller is the platform. While this makes a lot of sense on
conventional processor-centric architectures, on a heterogeneous platform like
Enzian it may be desirable to explore different role assignments with the CPU
and FPGA. Another less ideal design of using numerical IDs to denote differ-
ent resources e.g. sensors, voltage domains, etc. This requires maintaining an
external mapping of actual system resources according to topology to such IDs,
before invoking the commands. This makes the discoverability claim of SCMI
weaker and the protocol more difficult to use. Last but not least, SCMI is a
relatively young standard (first version 2017) with relatively few adopters across
the industry. The open-source code provided is also not very well documented,
making it difficult to adopt the standard.

DMTF Redfish The Redfish [DMTF(2022)] standard by DMTF uses REST-
ful [Richardson and Ruby(2008)] semantics to access a schema-based data model
for conducting management operations. The standard is proposed as a successor
to the popular IPMI standard, targeting servers as well as most data centre IT
equipment. The protocol employs a hierarchical namespace, the resource tree,
for all resources present in a system, with human-readable Uniform Resource
Identifiers (URI) for identifying and interacting with them. The standard is built
around the OpenAPI standard [The Linux Foundation(2021)], using the Hyper-
text Transfer Protocol (HTTP) and the JavaScript Object Notation (JSON) as
exchange formats. The standard is widely adopted by server manufacturers, in-
cluding Dell [Dell Inc.(2022)], HPE [Hewlett Packard Enterprise Development LP(2022)]
and Supermicro [Super Micro Computer Inc.(2023)]. The OpenBMC [The OpenBMC Community(2022b)]
distribution has an implementation for Redfish.

The Redfish protocol, in terms of resource description, is the closest to what
a heterogeneous system like Enzian needs, thanks to the high level of customiz-
ability as well as the resource tree denotation. Unfortunately, it is tightly cou-
pled with the HTTP protocol and JSON data models, which can be tough to
implement reliably in embedded environments like the secure world firmware
or on a micro-controller on the FPGA. The integrated security model also re-
quires encryption as part of the standard. These are non-issues for Redfish since
their main goal is to support OOB management in enterprise data centres, but

6

Protocol (A) (B) (C) (D) (E) (F)
UEFI/ACPI 7 l 7 l 7 l

IPMI 3 7 l 3 7 l
SCMI 3 l 3 3 7 3

Redfish 3 3 7 7 3 3

EFRI 3 3 3 3 3 3

Table 1: Comparison of existing firmware protocols with EFRI with the pro-
posed properties. Legend: 3: satisfies requirement; l: partially satisfies re-
quirement; 7: does not satisfy the requirement.

it would require an unnecessarily large and complicated codebase for in-band
management on a heterogeneous research platform like Enzian.

2.3 Motivation
We recognise that traditional industrial solutions are not exactly what we need
for a heterogeneous research platform. We summarise here the requirements of
a suitable firmware protocol on such platforms.

(A) Extensive: the protocol should allow easy extension of firmware function-
alities.

(B) Organised and discoverable: the various resources should be grouped in
namespaces that allow client users to enumerate available resources and
actions.

(C) Modular and composable: the protocol should not be closely coupled with
a specific transport technology to allow for implementation on diverse
platforms.

(D) Simple to implement: the protocol should be easy to implement in em-
bedded environments with a relatively compact codebase.

(E) Inspectable: the protocol should have human-readable messages for easy
debugging.

(F) Usable: the protocol should assist developers in generating boilerplate
code and validity checking.

The requirements correspond to the challenges of firmware protocols on het-
erogeneous systems closely. A research-focused system moves forward quickly
during development and various evaluations, thus necessitates the protocol to
be extensive and modular. On the other hand, the protocol should be easily
implementable by system designers and usable by end-users with relatively little
engineering effort.

7

We compare the existing protocols with EFRI, the proposed firmware pro-
tocol for heterogeneous research systems, in Table 1. UEFI/ACPI is by-design
strongly coupled to the x86/PC landscape, thus failing (A) and (C); ASL of-
fers severely limited readability and namespacing support, which fails (E) and
impacts (B) (D) and (F). The vendor fragmentation of IPMI makes it fail (B)
and impacts (F); the binary message format being specified in the standard
also limits (C) and (E). In SCMI, services are not self-describing and require
an external manifest, thus limiting (B); it also specifies a fixed binary message
format, which fails (E). Redfish is by far the most suitable protocol, but its
strong dependencies on HTTP and JSON make it fail (C) and (D). We show
in Section 3 how EFRI satisfies all these requirements.

3 Protocol Design
In this section, we present the design of EFRI as a firmware protocol. We first
introduce basic concepts important to defining the protocol. We then show the
key design choices that make EFRI stand out among other firmware protocols
in the ways we discussed in Section 2.3.

3.1 Basic Concepts
EFRI is designed to be a protocol of Remote Procedure Call (RPC)-style. The
execution of an action is done via a pair of request and response messages
between the action initiator, which we call the client, and the action receiver,
which we call the actor. Hardware devices on the platform may hold both roles
at the same time, for example, the CPU may request the BMC for telemetry
data, while the BMC may also request the CPU for a graceful shutdown of the
OS.

The base protocol is synchronous as the main design requirement of an in-
band-management focused protocol and low expected latency of actions. With
that said, actions that require a very long time to finish can be implemented
asynchronously through the asynchronous event mechanism, which we introduce
in Section 3.4. Between each client and actor, two logical channels should exist:
the synchronous request and response channel, and the asynchronous events
channel. The logical channels may be multiplexed over physical channels such as
a Universal Asynchronous Receiver-Transmitter (UART) link, or be forwarded
over other hardware components in the system.

Resources in the system are denoted with endpoints that host actions avail-
able to be invoked by clients. Namespaces that group actions for a clean or-
ganisation thereof are also denoted with endpoints and will be introduced in
Section 3.2. Actions are required to be stateless, to avoid complicated tracking
of client state information in the actor implementation in low-level firmware.

Most actions on resources are shared among different types of resources. For
example, a power rail has voltage and current telemetry data, both of which
support the get semantic to retrieve data. Sharing actions among different

8

resources help reduce boilerplate and maintain a consistent interface. Four
common semantics are defined protocol-wide in EFRI:

• put: write data to endpoint

• get: read data from endpoint

• subscribe: subscribe to updates of endpoint data

• list: list children actions of namespace endpoint

Specifications of resources on a platform are expressed in a concise format
following a defined schema. This allows for the automatic generation of boiler-
plate code on the actor side, as well as automated checks of message validity.
The generator-based approach minimises possible semantic mismatches among
different resources in the system. It also makes future extensions to the protocol
easy to implement, through changes to the global schema. (requirements (A)
(F))

3.2 Namespacing and Resource Discovery
Actions on resources in a system implementing EFRI are described by the name
of the action and the canonical name of the resource. We name the canonical
name the Firmware Resource Name (FRN). To perform an action on a specific
resource, the client invokes the action with appropriate arguments on the FRN.
The FRN is assigned according to where the resource topologically is in the
system, i.e. on the device it belongs to. Thus, an FRN can be well-known and
thus hard-encoded in client logic; for example, the CPU power control resource
has the well-known FRN of cpu::power.

On the other hand, an FRN could also be discovered at runtime by travers-
ing the root namespace. Namespaces organise all actions on FRNs in the system
hierarchically. This is a common way of structuring resources in many exist-
ing protocols, e.g. RESTful web services [Richardson and Ruby(2008)], Redfish
[DMTF(2022)], and Oracle ILOM [Oracle(2014)]. A view describes the lay-
out of namespaces a system adopts and is essentially an alternative index of
the actions on resources in a system for easier access. Examples of views in-
clude the by-device view, which coincides with the FRN, and by-subsystem view,
which groups resources by logical purposes of the resources, such as power and
telemetry. An example FRN and the containing namespace is shown in Fig-
ure 2. (requirement (B))

3.3 Security and Virtualisation
Security and virtualisation are crucial features for heterogeneous systems in
production, taking into account that different components on the system may
be programmed by different parties and thus inherently have different trust
and authority levels. For the convenience of presentation, we show an example

9

Namespace: ::telemetry︸ ︷︷ ︸
subsystem

: platform:rails:BMC_VCC_3V3:voltage︸ ︷︷ ︸
topology

Action: get︸︷︷︸
name

@ platform:rails:BMC_VCC_3V3:voltage︸ ︷︷ ︸
FRN

Figure 2: Example of the FRN and containing namespace of the voltage rail
BMC_VCC_3V3. The topology part of the namespace coincides with the FRN of
the action due to the way the namespace was generated. Colons (:) are used as
separators for different segments in the FRN and namespace names.

system with virtualised tenants running VMs on the CPU and apps on the
FPGA, as shown in Figure 3. Requests are forwarded by components lower in
the hierarchy to the final destination.

BMC

CPU EL3 (ATF) FPGA Shell

Hypervisor

VM#1 VM#2 VM#3

App#1 App#3App#2

Req: unload App#3

Req@VM#3: unload App#3 VM.id == App.owner.id?

Figure 3: Example of how a request traverses a CPU-FPGA heterogeneous
system. A request from the CPU VM to unload an application needs to go
through the hypervisor, the CPU EL3 firmware, and the BMC, finally arriving
at the FPGA shell. The FPGA shell checks if the initiator is authorised to
unload the app by checking if it’s the owner of the app.

Defining trust for security and virtualisation is difficult. The compartmen-
talisation of software components is very important; for example, a compromise
of a kernel component, hypervisor, or the Arm Trusted Firmware (ATF), auto-
matically means void of all trust above that level. In contrary, since the BMC
and CPU are distinct devices that do not share memory, we can reason about
trust of them separately. We define the attack model here to be that we trust
all the forwarding agents with an external assurance, for example, various at-
testation schemes [Brickell et al.(2004), Seshadri et al.(2004), Microsoft(2022)].
The system designer can incorporate fail-safe mechanisms in case the attestation

10

mechanism reports a violation.
The permission check process happens along the forwarding chain. First, the

first forwarding agent tags the message with an appropriate initiator label. The
actor then grants or denies access to a specific resource based on the trusted
initiator label according to a policy database. Optionally, the forwarders can
choose to drop a request according to its local policy database. We leave the
exact format of the label and policy unspecified; they are orthogonal to the base
protocol and can be specified in a separate work.

The protocol itself is agnostic of being implemented in-band or out-of-band,
therefore does not necessitate any transport-level security. In the case of an in-
band implementation, in a lot of situations, the physical security of the platform
is enough: for example, a UART link as PCB traces is secure enough for most
servers in managed environments. For clients exposed over the network, for
example in a remote management scenario, user authentication and transport-
layer encryption can be added independently.

3.4 Asynchronous Event Mechanism
For applications such as telemetry data delivery, we often want to get periodical
updates on a specific data source. Instead of polling the data source at the
desired interval manually, a better pattern is to subscribe to the data source
for update with the given interval, as shown in Figure 4B. This saves the client
CPU cycles needed to generate the request for every update. More importantly,
it also allows the collecting of temporally precise data points in comparison to
synchronous invocation, where the exact time the sample is taken is unknown,
as shown in Figure 4A.

Another important use case of the asynchronous event mechanism is for asyn-
chronous invocations. Although the base protocol is defined to be synchronous,
we recognise that some operations may inherently take a long time to finish. It
would be wasting resources if we keep the client busy looping and waiting for
the response. We support asynchronous invocations through the asynchronous
event mechanism by registering the invocation synchronously with an ID and
later issuing a one-shot event with the same ID to signal completion. The client
can then handle this event and complete the call. This process is demonstrated
in Figure 4C.

One point to note for implementation is that the event channel has to be
a separate logical channel from the usual synchronous channel. This can be
either a different physical channel or multiplexed over the same physical channel.
The reason is straightforward: the synchronous channel does not expect event
messages and would not be able to correctly handle such messages.

3.5 Symmetric Client/Actor Design
An important aspect in the design of EFRI is that the protocol is symmetric in
regard of the hardware components in the system. In most traditional designs,
the CPU is implicitly assumed to be the center of the entire system i.e. the

11

Client Actor

Request: get telemetry

read telemetry

Response: telemetry data

Request: get telemetry

read telemetry

Response: telemetry data

sync invocation

sync invocation

A The usual synchronous
invocation model to ac-
quire sensor samples peri-
odically.

Client Actor

Request: subscribe telemetry

success

read telemetry

Response: telemetry data

read telemetry

Response: telemetry data

subscription

event delivery

B Event subscription and
subsequent delivery for
periodic sensor samples.

Client Actor

Async Request: update firmware

queued as #1

#1 success

async invocation

C Asynchronous invoca-
tion implemented with
the asynchronous event
mechanism.

Figure 4: Demonstration of use cases of the asynchronous event mechanism.

initiator ; the FPGA or BMC can only be the actor. This is not the case in EFRI,
as the CPU can also implement services as actors to expose resources, such
as performance counters or even OS-defined services. The BMC can also have
clients, for example a shell to control resources in the system. This view provides
unmatched flexibility for heterogeneous systems which previous solutions cannot
offer.

4 Implementation
In this section, we discuss one implementation of the proposed protocol on the
Enzian platform. Due to the time constraints of the project, we only implement
the most essential components as a Proof-of-Concept (PoC) for the protocol. An
overview of the reference implementation is shown in Figure 5. We document
how these software components are implemented and the trade-offs. Nonethe-
less, we also discuss how the other components can potentially be implemented
for future reference.

Hardware The Enzian v3 platform, codenamed zuestoll, has a Cavium ThunderX-
1 CPU and a Xilinx XCVU9P FPGA as the main application processors con-
nected by the ECI interconnect; a block diagram can be seen in Figure 1. In
addition, there is a Zynq-7000 BMC on board, whose Programmable Logic (PL)
is connected to the CPU and FPGA via low-speed IO pins. A UART link is

12

CPU

Linux

esmc-mailbox.ko

User application

efri-raw.ko

ioctl

mailbox

Arm Trusted Firmware

SMC

BMC

UART

Linux

xuartps.ko
UART

EFRI service

Transport & wire

EndpointEndpointEndpointEndpoint Enzian Power
Management

Service

DBus

i2c.ko

read
Host machine

Platform-agnostic schemaPlatform-specific schema Schema compiler

libefri.so

Figure 5: Overview of the reference implementation of EFRI on Enzian. Red
denotes common EFRI infrastructure that is common between platforms; green
denotes platform-specific bits from the system integrator; yellow denotes exist-
ing platform systems.

implemented between the CPU and BMC for EFRI, while a similar setup is
possible between the BMC and FPGA. A link for EFRI between the CPU and
FPGA can either be a direct one over ECI or forwarded by the BMC.

Terminology The client and actor discussed here refer to roles in the pro-
tocol, which may not entirely correspond to hardware devices in the platform.
Each device can have more than one client of the protocol; for example, the CPU
has a user client that invokes telemetry requests, while inside the firmware it
has another PSCI client that issues power-down calls.

4.1 The schema compiler
EFRI specifies resources on platforms using schemas to reduce hand-written
boilerplate and enforce consistency. The schema is written in YAML and defined
in two parts: platform-agnostic and platform-specific. The platform-agnostic
schema defines objects shared by all actors and clients. This includes basic
types transmitted on the protocol, for example, error values, integers, floating
point numbers, etc. It also defines the four common actions of endpoints, put,
get, subscribe, and list. The common nodes are referenced by the platform-
specific part of the schema to reduce redundancy.

The platform-specific part of the schema specifies various resources available
on a platform, ranging from voltage and current readings of power rails, RPM
of chassis fans, configuration parameters, etc. Each endpoint is denoted by the
resource name, actions on the resource, a class-object-subsystem tuple to
uniquely identify the resource, the type of the data, the implementation back-
end of the endpoint, and a human-readable description for a self-documenting
implementation. Common resource types are defined as template nodes and ex-
posed as YAML anchors for maximum reuse.

13

The schema compiler loads the platform-specific YAML schema. With a
plugin, it also additionally loads platform-specific extra endpoints defined by
external structural data, for example, voltage rails defined in the Enzian BMC
Power Management project. It then checks all the endpoints to see if the re-
quired properties are defined. Finally, it generates marshalling and unmar-
shalling code with string templates, including type bindings, for all actors and
clients. It also generates the endpoint implementation database for actors, which
describes what concrete actions the actor will take for an incoming request. This
will be described in detail in Section 4.3.

4.2 CPU
The CPU currently has three protocol-level roles proposed in the system, among
which two are implemented. The PSCI client and the user-mode client (except
for subscriptions) are implemented and tested to be functional. The CPU-side
telemetry actor is proposed but not yet implemented.

Shared infrastructure The ATF codebase hosts most of the common soft-
ware components shared by all roles on the CPU. The core component is
the EFRI link layer, which performs two duties: 1) marshalling and unmar-
shalling an EFRI message into the wire format and 2) transmitting and receiv-
ing marshalled messages over the UART link. They are packaged into a library,
libefri, for different clients to call into, either directly inside ATF or across
the EL3 boundary via Secure Monitor Calls (SMC).

The wire format is a simple ASCII-based textual serialisation of an EFRI
payload for quick prototyping; an example can be found in Figure 6. While it
is possible to adopt a more sophisticated encoding, for a PoC implementation
a human-readable wire format is a lot easier to implement and debug. Values
are always typed, allowing the unmarshalling code to assign appropriate type
tags, which the application logic can then check against. The clients and ac-
tors in EFRI never get hold of the raw wire format, but instead always the
unmarshalled structure (or possibly a further encapsulated format). Thanks to
this modular approach, a more compact format can be adopted in the future if
needed. (requirements (C) (E))

The most basic unmarshalled structure, and so far the only implemented
one, uses the argspage convention. Specifically, it is a C structure with trailing
data to store strings in the message. When a field of the structure contains a
string, a ptrdiff_t pointing to the string in the trailing data, with the start
of the structure as the pointer base, is stored. An example of the argspage
convention can be seen in Figure 7. The argspage is used to pass a message
between software components.

Multiple alternative designs of an unmarshalled data structure exists. Simple
solutions include encoding strings directly inside the structure, either as a fixed-
length buffer or with a length tag. The downside of a fixed-length buffer is that
an artificial upper limit of length must be determined, which results in either
too much limitation or waste of memory. Other complicated encoding formats

14

==EFRI== =>︸ ︷︷ ︸
request preamble

platform:fans:CASE_FAN_0:rpm︸ ︷︷ ︸
FRN

get︸︷︷︸
action

\n

==EFRI== <=︸ ︷︷ ︸
response preamble

platform:fans:CASE_FAN_0:rpm︸ ︷︷ ︸
FRN

get︸︷︷︸
action

Error$0︸ ︷︷ ︸
error code

Rpm$300#RPM︸ ︷︷ ︸
value

\n

Figure 6: Example request and its response of a telemetry request for the RPM
of a case fan. The wire format is tokenised with spaces and terminated via a
newline character (\n). Notice the type tags for the error code and fan RPM
data.

would require another layer of parsing, complicating code interacting with the
structure. The argspage design is easy to implement with a simple reinterpret
pointer cast, with its security and portability implications. If a bullet-proof
design is desired, a mechanism such as ProtoBuf [Google LLC(2023)] can be
adopted, thanks to the modular design of the protocol. (requirement (D))

FRN

Action

Role: ROLE_REQUEST

Num_args: 2

Arg[0]

Type: EFRI_TY_ERROR

Val: 0

Arg[1]

Type: EFRI_TY_RPM

Val: 300

Auxilliary data

"platform:fans:CASE_FAN_0:rpm"

"get"

Figure 7: The unmarshalled argspage for the response ==EFRI== <=
platform:fans:CASE_FAN_0:rpm get Error$0 Rpm$300#RPM\n (from Fig-
ure 6).

ATF client The Power State Coordination Interface (PSCI) handles power-
down requests from the operating system in the firmware. On a ThunderX
system, this is handled by sending an IPMI request to the BMC. We implement

15

the power-down handler as sending a power-off request to the BMC, specifi-
cally by putting 0 to cpu::power. The implementation assembles the argspage
statically and calls into libefri to transmit the request.

Another proposed use case inside EL3 is to host the DRAM parameters and
UEFI variables on EFRI. This is currently difficult to implement, due to DRAM
currently being initialised in the Board Development Kit (BDK) of ThunderX
and not inside the ATF; a more detailed description of this situation can be
seen in Appendix A. It should be easy to implement in BL1 of ATF after the
convergence of the two codebases.

User-mode client Most use cases of EFRI originate from user-space appli-
cations on the CPU. We currently implement the simplest way to expose EFRI
to the user by allowing them to construct the argspage directly, and then call-
ing into the efri-raw Linux kernel module. It then in turn calls into the
esmc-mailbox kernel module, which calls into the ATF with a SMC call. The
ATF then uses the common EFRI infrastructure there to talk to the BMC. The
entire call graph is shown in Figure 8. In realistic situations, the platform de-
veloper should expose a better encapsulated and limited interface and perform
checks at each level.

The user application constructs the argspage with the help of a user-space
libefri, pushing strings into the auxiliary buffer as shown in Figure 7. The
argspage has in addition a small header to encode the destination device (BMC
or FPGA) and length. The destination is not part of the protocol, as we do not
implement forwarding of messages from one device to another at the moment.
The length is an optimisation and also not part of the protocol, as most of the
times we only need to copy part of the argspage from user-space into kernel
memory. After constructing the argspage, the user application then calls ioctl
on a device file exposed by the EFRI kernel driver, passing the pointer to the
argspage with the header. Finally, the user application receives the response
argspage inside the same buffer it passed to the kernel.

The Linux kernel module efri-raw handles the ioctl call by making use of
the Linux Mailbox Framework [Brar(2023)]. A mailbox is a hardware compo-
nent to deliver messages between processors, usually in a single System-on-Chip
(SoC). The Linux framework allows part of the kernel to be registered as a mail-
box controller, which handles transmitting and receiving messages to and from a
hardware mailbox. A mailbox client in another part of the kernel then produces
and consumes the messages. With this design of decoupling the transport from
the user-facing interface, we can in the future provide better-encapsulated in-
terfaces than efri-raw that, for example, exposes only a subset of all resources
and performs permission checks, without having to rewrite the firmware-facing
esmc-mailbox module.

Upon an ioctl call, efri-raw first copies the argspage from user space into
the kernel buffer. Then, as a mailbox client, the kernel module passes the buffer
pointer to the esmc-mailbox (Extended Secure Monitor Call, ESMC) module,
which implements a mailbox controller. After finishing, the ESMC mailbox

16

EL0 EL1 EL3

user app efri-raw esmc-mailbox ATF BMC

probe

UUID, Version

post argspage

success

ioctl("/dev/efri0")

mailbox send

invoke

ASCII request

ASCII response

mailbox notify

ioctl return

CPU power down

success

platform probe

client invoke

psci power off

Figure 8: Call routine of three example CPU-side actions. The platform probe
happens at load time of esmc-mailbox; client invoke happens when a client
calls into EFRI; PSCI power off happens when the OS shuts the system down.

17

controller module passes the response argspage via the mailbox framework back
to efri-raw, which in turn passes it back to the userspace in the ioctl buffer.

The esmc-mailbox module is the mailbox controller for EFRI requests, inter-
facing with the system firmware instead of actual mailbox hardware. It performs
platform probing on load by trying to invoke various SMC calls to check for the
vendor UUID and protocol version, to ensure that it invokes the right EL3 ser-
vice. After probing, it allocates a physical memory page and posts this via an
SMC call to the EL3 firmware as a shared buffer. This method is adopted since
the standard SMC call convention does not support passing arbitrary amounts
of data; at most 8 words (64 bytes) can be passed as arguments and 4 (32 bytes)
as return values in one SMC call. Upon receiving the posted buffer, the EL3
firmware maps the page as Non-Secure Read-Write, allowing shared access from
both EL1 and EL3.

Upon receiving a mailbox send request from the efri-raw client, esmc-mailbox
copies the buffer contents (without the ioctl headers) into the shared argspage
page and issues an SMC call into EL3 firmware. The EFRI runtime service
inside the firmware handles the call in a blocking fashion. It first copies the
contents of the shared argspage into a private buffer, to mitigate potential Time-
of-Check-to-Time-of-Use (TOCTTOU) attacks [Wei and Pu(2005)]. After that,
the firmware marshals the request, transmits it over the UART link to the BMC,
and spin on the UART link to receive the response from the BMC. Finally, it
unmarshals the request back into the shared argspage page. The firmware also
returns time measurements taken in EL3 as the SMC call’s return values, which
are described in detail in Section 5.2.

A proposed but not yet implemented aspect of the user-mode client on the
CPU is the asynchronous event mechanism for the subscription model. We
need an upcall [Barton-Davis(1998)] from the EL3 firmware into the EL1 OS.
This is standardised by Arm on ARM platforms as the Software Delegated
Exception Interface (SDEI) [Arm Limited(2023)] for delivering platform events
to the operating system. We can implement the routine by routing the interrupt
from the UART controller to EL3, which then generates a software exception
into the kernel. The kernel could either post the data into some buffer and
wait until the client application polls, or deliver it directly as a signal. We
would also need to implement channel multiplexing on the UART link, including
dispatching incoming messages to the corresponding channel and associated
buffering.

CPU-side actor As discussed in the protocol design in Section 3.5, the CPU
can potentially expose various resources for other clients in the system, for
example, performance counters of the CPU and the OS. Some requests, such as
CPU performance counters or status registers, can already be served inside the
ATF. Other more complicated requests would need to be serviced with an upcall
into the OS. This can be implemented on the CPU side with the asynchronous
event mechanism (once it is implemented): the EL3 can generate a software
exception for an incoming request for handling in the OS. The exact semantics

18

of such OS-driven services are left for future work to explore.

4.3 BMC
The BMC currently has the actor part facing the CPU implemented. In general,
the implementation is written in Python and runs as a standalone process on
the BMC. The Python script will eventually be integrated into the OpenBMC
distribution as a systemd service.

As an actor The Python service receives marshalled requests in the EFRI
ASCII wire format as shown already in Figure 6. After unmarshalling the mes-
sage, the service tries to match the FRN and action name against the endpoint
implementation database. If a matching one is found, the service then executes
the corresponding action and generates the response. Finally, the response is
marshalled and sent back on the UART link, before proceeding to blocking-
receive the next request. Any errors during this process will result in an error
response being sent back, and the service should never crash.

The endpoint implementation database is generated by the schema compiler
to select a concrete backend for all endpoints. The compiler generates instanti-
ations of backend implementation classes according to the node of the resource
in the schema. Different implementation classes consume different properties in
the resource definition. A concrete example can be seen in the case study in
Section 5.1.

We abstract the concept of datasources that support get actions and option-
ally put and subscribe actions. The actual data source is defined by further
specialisation, either from a dummy data source during development that sim-
ply holds the last stored value or a data source that talks with the BMC power
management service over DBus for real telemetry data. Another common end-
point implementation is for binary switches backed by Linux commands to flip
the switch on or off. This is used to implement the power-on/off actions since
the high-level functionalities of the power management service are not exposed
over DBus yet, but possible with a shell command.

An important subsystem for evaluating the performance of the action imple-
mentations is the benchmarking subsystem. A global Benchmark singleton class
in Python allows the entire processing pipeline to inject timestamps for a de-
tailed breakdown of the request processing procedure. The benchmark database
control is exposed over EFRI to the client as bmc:benchmark::control for
starting and stopping timestamp collection. The collected timestamps are dumped
onto the BMC as a JSON file for later inspection.

As a client The BMC currently does not have a client role implemented,
but we propose the possible use cases here. Note that multiple client roles
on the BMC still make sense even if the only actor device in the system. An
important use case is for out-of-band management (OOB). For example, we
can expose EFRI actions as commands for a shell interface to the BMC. This

19

will allow simplification and unification of the existing administrative interfaces.
We could potentially also expose a Redfish-style RESTful API for standardised
remote management.

4.4 FPGA
We currently do not have a universal shell on the FPGA side. When this is im-
plemented in the system, many services can be exposed to EFRI from the FPGA;
for example performance counters, tenant status and control in a multi-tenancy
setup, and possibly a reconfiguration interface. The shell can further provide
EFRI client and/or actor interfaces to the applications for further integration
with EFRI. Another possibility is to use the FPGA to instrument the CPU over
ECI, for example with the Arm CoreSight infrastructure [Arm Limited(2021)].
EFRI can also provide a nice, standardised interface for this.

5 Evaluation
In this section, we evaluate the proposed design and reference implementation.
We first present two case studies of the implementation of resources in EFRI to
showcase the extensibility and usability claims. We then show two performance
evaluations to give a rough impression of the overall runtime cost of the protocol
implementation.

Experiment setup We run all the experiments on Enzian v3 (zuestoll) ma-
chines. Specifically, the CPU is a 48-core Cavium ThunderX-1 Processor. The
BMC, at the time of writing, is a Xilinx Zynq 7000 SoC. The exact commit
hashes and repo URLs can be found in Appendix C. The UART link between
the BMC and CPU is configured with a 115200 baud rate, 8 data bits, no parity
bits, and one stop bit (115200-8-N-1).

Toolchain overview The EFRI toolchain builds the implementation on a
development machine for deployment onto a target machine i.e. an Enzian.
The schema compiler runs on the development machine and consumes the input
YAML schema and any additional structured data, as described in Section 4.1.
It then produces generated source files for each hardware component, C files for
ATF on the CPU, and Python files for the service on the BMC. The C sources
are compiled with ATF into the fimware image to flash onto the CPU. The
Python files are deployed to the BMC to run as a systemd service.

5.1 Case studies
We show case studies of how the developer would extend the functionality of
a system implementing EFRI. We present the changes needed for adding a
resource to an actor. We then show the corresponding client change to call the
newly-added resource.

20

CPU power-down The resource needed for controlling the binary power
state of the CPU is a binary switch. This is defined first in the platform-agnostic
schema, efri-schema.yml, as a shared anchor as shown in Listing 1a. A node
for the CPU power switch is then defined in the platform-specific schema for
Enzians, enzian-efri.yml, as shown in Listing 1b.

The switch-cmdline implementation backend specifies that this action is
implemented by executing a shell command. The schema compiler generates
three entries in the endpoint implementation database: the endpoint cpu::power,
and the containing namespace for the two actions ::power:cpu:power and the
parent ::power:cpu. The developer extends the codegen logic to correctly gen-
erate the new endpoint entry, as shown in Listing 2. The entries are shown in
Listing 3.

Finally, the developer defines the CmdlineSwitch class as a specialisation
of the DataSource endpoint backend. The implementation overrides behaviour
for the put and get python methods to execute commands accordingly. This is
demonstrated in Listing 4.

The client of this resource is in the ATF PSCI system_off handler as shown
in Listing 5. The client code constructs the argspage statically and then invokes
the EFRI routines to transmit the request to the BMC. Since the constructed
argspage does not cross the ESMC boundary, we do not have the requirement to
fit the entire structure into a single page. Thus, we directly subtract the start
of the frame from the static string pointer to calculate the required ptrdiff_t
values.

Power rail telemetry Power rail telemetry data include voltage and current
readings for all rails defined by the Enzian power management service. Since
there exists already a structured representation of all the rails in the system
and their topology data, we do not duplicate these in the schema. The schema
compiler directly loads them from the Python modules and generates the nodes.
Nevertheless, we have the shared anchor for voltage rails defined as shown in
Listing 6, and the compiler generates the nodes by overriding them.

The implementation backend for power rails, datasource-dbus-power, talks
to the Enzian power management service over DBus. The backend is read-only
and accepts a (device, monitor) tuple to read from a monitor node in the power
service. The mapping from the power rail name to the tuple is acquired through
the topology database in the enzianbmc Python package. Similar to the case of
power switches, the developer extends the codegen logic as shown in Listing 7.
An example of generated endpoint implementation database entries is shown in
Listing 8.

The developer defines the DBusPowerDataSource Python class to implement
these endpoints. It connects to the system bus, issues a read_device_monitor
message on the Enzian power service, and returns the value. A simplified im-
plementation can be seen in Listing 9.

The client application for acquiring telemetry data runs in Linux userspace
and calls into EFRI through the efri-raw and esmc-mailbox kernel modules,

21

0 10000 20000 30000 40000 50000 60000 70000
Time (us)

put@bmc:benchmark::datasource
get@bmc:benchmark::datasource

get@platform:rails:BMC_VCC_3V3:voltage
list@bmc:benchmark::ls_5

list@bmc:benchmark::ls_10
list@bmc:benchmark::ls_15
list@bmc:benchmark::ls_20
list@bmc:benchmark::ls_25
list@bmc:benchmark::ls_30
list@bmc:benchmark::ls_35
list@bmc:benchmark::ls_40

BMC-read_req
BMC-unmarshal_req
BMC-invoke_action
BMC-marshal_resp
BMC-write_resp
BMC-flush
CPU-smc
CPU-ioctl

Figure 9: Timing results for invoking different endpoints. The bars with caption
CPU- denote latency measured on the CPU side; bars with BMC- are on the
BMC side.

as discussed in Section 4.2. The client code only has to open the device file,
ioctl the argspage buffer, and read the response back. An example is shown in
Listing 10.

5.2 Performance
We present a basic performance test of the reference protocol implementation
between the CPU and BMC, as described in Section 4. The round-trip time is
measured by calculating the time difference between invoking the action on the
client side and the return of the ioctl call. We turn off all debug outputs.

Timing measurements Multiple points in the entire invocation chain take
timestamps to measure the time elapsed during various stages of processing. On
the CPU side, the user-mode client times the time of the ioctl call to get the
end-to-end latency of a call. This does not include further user-space processing,
such as assembling the argspage and consuming the response. The EL3 firmware
times the entire SMC handling time, as well as the time spent transmitting the
request and receiving the response. It returns these time measurements in the
SMC return values to the OS, which will then pass them back to user-space.
The BMC actor side further uses the benchmarking framework as described in
Section 4.3 to collect fine-grain timestamp data. The timing measurements from
both sources are analysed and plotted off-line on the host machine.

Latency breakdown We measure the time consumption of invoking data-
source endpoints and break down the latencies introduced by each stage of
processing. We present three types of endpoint operations: a dummy data
source without real backend processing (FRN bmc:benchmark::datasource), a
dummy namespace endpoint with synthetic children (FRN bmc:benchmark::ls_*),
and a real data source with DBus backend (FRN platform:rails:BMC_VCC_3V3:voltage).

22

As shown in the legend of Figure 9, the timestamps mean the following:

• read_req: time spent for BMC to read the request over UART

• unmarshal_req: time spent for BMC to unmarshal the request

• invoke_action: time spent for BMC to execute the given action

• marshal_resp: time spent for BMC to marshal the response

• write_resp: time spent for BMC to enqueue the marshalled response (not
flush!)

• flush: time spent for BMC to flush UART buffer onto the wire

• smc and ioctl: time spent due to SMC/ioctl call overheads

We observe that the most significant overhead of the protocol is transmitting
and receiving the ASCII-format message over the UART link (read_req for
request and write_resp plus flush for response). This overhead is linear to the
length of the marshalled request and response. This is more significant when
listing larger namespaces. This shows that the implementation still has much
potential for optimisation to reduce latency if a more compact wire format is
used, or if a higher baud rate is used on the UART link.

Another observation is made from the comparison of a real data source over
a dummy one. In calling get on the platform rail voltage, significant latency
comes from the invoke_action phase, which is absent in the dummy data source.
This corresponds to invoking the power management service over DBus, which
in turn reads the voltage data from I2C. The ratio of this latency compared
to other latencies shows that the wire format overhead is comparable to the
necessary latency for doing useful work.

An additional interesting observation is that the UART implementation on
the BMC has internal buffering corresponding to approximately 20 milliseconds
of UART activity; data less than this buffer would be enqueued immediately and
only transmitted during buffer flush. If the client pushes through more data,
the writing process would then block, resulting in latency under the write_resp
category. This provides a perspective of the speed of the UART link between
the CPU and BMC, as well as internal buffering of the Python serial library.

6 Discussion
While the design presented here is complete and can accommodate most use
cases of the protocol, some aspects remain unimplemented due to time con-
straints on the project. Some design choices have been made towards simplicity
instead of efficiency, which leaves large room for optimisations. The codebase is
also at the time of writing not yet integrated fully into the Enzian ecosystem.
Nevertheless, we believe that this work and its artefacts should serve as a good
starting point for future efforts in these directions.

23

Another important topic is how the design and implementation would evolve
while the rest of the Enzian software ecosystem rolls forward. We already men-
tioned a merge between the BDK and ATF codebases and tracking upstream
TF-A. As the ATF implementation of EFRI is structured modularly with the
library and runtime service interfaces, which still exists in upstream TF-A, a
migration should not require too much effort. The new codebase would also
bring much useful new features such as SDEI to our utility.

The BMC-side software and hardware also expects to see drastic changes
with the overhauling to the new Zynq UltraScale+ MPSoC platform, as well
as an ongoing effort to switch the software stack to seL4. The switch to MP-
SoC should be easy to accomodate once the CPU-facing UART port is set up
correctly for Linux, since the current EFRI codebase on the BMC is purely in
Python. The adoption of seL4, especially if we decide to get rid of Python, would
be a more involved task; we should be able to reuse most of the ATF codebase
for the base protocol (wire format, etc.). But since we would not have DBus,
the IPC scheme between the EFRI and power management services remains to
be figured out. This then needs to be adapted into the EFRI codebase.

7 Conclusion
In this work, we introduced the Enzian Firmware Resource Interface (EFRI).
As presented in the motivation in the work, EFRI is a better fit for platform-
level management tasks on heterogeneous systems in comparison to existing
industrial standards that had similar but different goals targeting conventional
PC, server, or SoC systems. EFRI, being designed specifically with extensibility
and flexibility in mind, is a great fit as the firmware protocol on heterogeneous
systems such as Enzian.

We further demonstrated that the proposed protocol is practical to imple-
ment and satisfies the requirements we put forward in the motivation. As part
of the evaluation, we presented a reference implementation on Enzian. We fur-
ther showed the practicality using two extensive case studies and performance
characterisation of the reference implementation. They should establish a sound
basis for a future where EFRI is the real common substrate of heterogeneous
platforms.

Acknowledgements
The author would like to thank Daniel Schwyn, David Cock, Ben Fiedler, and
Michael Giardino for their extremely helpful comments and discussions in shap-
ing the design of the protocol, as well as practical help with the implementation.
The authors would also like to thank the Enzian team for reviewing the report
and providing valuable feedback.

24

References
[Agron et al.(2006)] Jason Agron, Wesley Peck, Erik Anderson, David Andrews,

Ed Komp, Ron Sass, Fabrice Baijot, and Jim Stevens. 2006. Run-Time
Services for Hybrid CPU/FPGA Systems on Chip. In 2006 27th IEEE
International Real-Time Systems Symposium (RTSS’06). 3–12. https:
//doi.org/10.1109/RTSS.2006.45

[Andrews et al.(2004)] D. Andrews, D. Niehaus, and P. Ashenden. 2004. Pro-
gramming models for hybrid CPU/FPGA chips. Computer 37, 1 (2004),
118–120. https://doi.org/10.1109/MC.2004.1260732

[Arm Limited(2013)] Arm Limited. 2013. ARM Trusted Firmware Design.

[Arm Limited(2021)] Arm Limited. 2021. Learn the architecture - In-
troducing CoreSight debug and trace. https://developer.arm.com/
documentation/102520/0100.

[Arm Limited(2022a)] Arm Limited. 2022a. Arm Server Base System Architec-
ture Platform Design Document. Version 7.1.

[Arm Limited(2022b)] Arm Limited. 2022b. Arm System Control and Manage-
ment Interface Platform Design Document. Version 3.2.

[Arm Limited(2022c)] Arm Limited. 2022c. SCP-firmware - version 2.11.
https://github.com/ARM-software/SCP-firmware.

[Arm Limited(2022d)] Arm Limited. 2022d. Trusted Firmware-A. https://
github.com/ARM-software/arm-trusted-firmware/.

[Arm Limited(2023)] Arm Limited. 2023. Software Delegated Exception Inter-
face (SDEI) Platform Design Document. Version 1.1.

[Barton-Davis(1998)] Paul Barton-Davis. 1998. upcalls. https://lkml.iu.
edu/hypermail/linux/kernel/9809.3/0922.html.

[Belwal et al.(2015)] Meena Belwal, Madhura Purnaprajna, and Sudarshan
TSB. 2015. Enabling seamless execution on hybrid CPU/FPGA systems:
Challenges & directions. In 2015 25th International Conference on Field
Programmable Logic and Applications (FPL). 1–8. https://doi.org/10.
1109/FPL.2015.7294022

[Brar(2023)] Jassi Brar. 2023. The Common Mailbox Framework. https://
docs.kernel.org/driver-api/mailbox.html.

[Brickell et al.(2004)] Ernie Brickell, Jan Camenisch, and Liqun Chen. 2004.
Direct Anonymous Attestation. In Proceedings of the 11th ACM Conference
on Computer and Communications Security (Washington DC, USA) (CCS
’04). Association for Computing Machinery, New York, NY, USA, 132145.
https://doi.org/10.1145/1030083.1030103

25

https://doi.org/10.1109/RTSS.2006.45
https://doi.org/10.1109/RTSS.2006.45
https://doi.org/10.1109/MC.2004.1260732
https://developer.arm.com/documentation/102520/0100
https://developer.arm.com/documentation/102520/0100
https://github.com/ARM-software/SCP-firmware
https://github.com/ARM-software/arm-trusted-firmware/
https://github.com/ARM-software/arm-trusted-firmware/
https://lkml.iu.edu/hypermail/linux/kernel/9809.3/0922.html
https://lkml.iu.edu/hypermail/linux/kernel/9809.3/0922.html
https://doi.org/10.1109/FPL.2015.7294022
https://doi.org/10.1109/FPL.2015.7294022
https://docs.kernel.org/driver-api/mailbox.html
https://docs.kernel.org/driver-api/mailbox.html
https://doi.org/10.1145/1030083.1030103

[Cavium Inc.(2016)] Cavium Inc. 2016. Cavium CN88XX Evaluation Base
Board User’s Guide.

[Cisco Systems Inc.(2020)] Cisco Systems Inc. 2020. Cisco Integrated
Management Controller (IMC) Data Sheet. https://www.cisco.
com/c/en/us/products/collateral/servers-unified-computing/
ucs-b-series-blade-servers/data_sheet_c78-728802.html.

[Cock et al.(2022)] David Cock, Abishek Ramdas, Daniel Schwyn, Michael Gi-
ardino, Adam Turowski, Zhenhao He, Nora Hossle, Dario Korolija, Melissa
Licciardello, Kristina Martsenko, Reto Achermann, Gustavo Alonso, and
Timothy Roscoe. 2022. Enzian: An Open, General, CPU/FPGA Plat-
form for Systems Software Research. In Proceedings of the 27th ACM In-
ternational Conference on Architectural Support for Programming Lan-
guages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’22).
Association for Computing Machinery, New York, NY, USA, 434451.
https://doi.org/10.1145/3503222.3507742

[Corbet(2014)] Jonathan Corbet. 2014. ARM, SBSA, UEFI, and ACPI. https:
//lwn.net/Articles/584123/.

[Dell Inc.(2022)] Dell Inc. 2022. Redfish API with Dell Integrated Remote Access
Controller. https://www.dell.com/support/kbdoc/en-us/000178045/
redfish-api-with-dell-integrated-remote-access-controller.

[Dell Inc.(2023)] Dell Inc. 2023. Integrated Dell Remote Access Controller
(iDRAC). https://www.dell.com/en-us/dt/solutions/openmanage/
idrac.htm.

[DMTF(2022)] DMTF. 2022. Redfish Specification. Version 1.17.0.

[Frazelle(2020)] Jessie Frazelle. 2020. Opening up the Baseboard Management
Controller: If the CPU is the Brain of the Board, the BMC is the Brain
Stem. Queue 17, 5 (jan 2020), 512. https://doi.org/10.1145/3371595.
3378404

[Free Software Foundation, Inc.(2021)] Free Software Foundation, Inc. 2021.
GNU GRUB. https://www.gnu.org/software/grub/.

[Google LLC(2023)] Google LLC. 2023. Protocol Buffers. https://protobuf.
dev/.

[Herdt et al.(2017)] Vladimir Herdt, Hoang M. Le, Daniel GroSSe, and Rolf
Drechsler. 2017. Towards early validation of firmware-based power man-
agement using virtual prototypes: A constrained random approach. In
2017 Forum on Specification and Design Languages (FDL). 1–8. https:
//doi.org/10.1109/FDL.2017.8303898

26

https://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-b-series-blade-servers/data_sheet_c78-728802.html
https://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-b-series-blade-servers/data_sheet_c78-728802.html
https://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-b-series-blade-servers/data_sheet_c78-728802.html
https://doi.org/10.1145/3503222.3507742
https://lwn.net/Articles/584123/
https://lwn.net/Articles/584123/
https://www.dell.com/support/kbdoc/en-us/000178045/redfish-api-with-dell-integrated-remote-access-controller
https://www.dell.com/support/kbdoc/en-us/000178045/redfish-api-with-dell-integrated-remote-access-controller
https://www.dell.com/en-us/dt/solutions/openmanage/idrac.htm
https://www.dell.com/en-us/dt/solutions/openmanage/idrac.htm
https://doi.org/10.1145/3371595.3378404
https://doi.org/10.1145/3371595.3378404
https://www.gnu.org/software/grub/
https://protobuf.dev/
https://protobuf.dev/
https://doi.org/10.1109/FDL.2017.8303898
https://doi.org/10.1109/FDL.2017.8303898

[Hewlett Packard Enterprise Development LP(2022)] Hewlett Packard Enter-
prise Development LP. 2022. Redfish API implementation on HPE
servers with iLO RESTful API. https://www.hpe.com/psnow/doc/
4AA6-1727ENW.

[Hewlett Packard Enterprise Development LP(2023)] Hewlett Packard Enter-
prise Development LP. 2023. HPE Integrated Lights-Out (iLO). https:
//www.hpe.com/ch/de/servers/integrated-lights-out-ilo.html.

[Intel et al.(2013)] Intel, Hewlett-Packard, NEC, and Dell. 2013. Intelligent
Platform Management Interface Specifciation v2.0. Revision 1.1.

[Iorga et al.(2021)] Dan Iorga, Alastair F. Donaldson, Tyler Sorensen, and John
Wickerson. 2021. The Semantics of Shared Memory in Intel CPU/FPGA
Systems. Proc. ACM Program. Lang. 5, OOPSLA, Article 120 (oct 2021),
28 pages. https://doi.org/10.1145/3485497

[Microsoft(2022)] Microsoft. 2022. Measured boot and host attesta-
tion. https://learn.microsoft.com/en-us/azure/security/
fundamentals/measured-boot-host-attestation.

[Minyard(2023)] Corey Minyard. 2023. The Linux IPMI Driver. https://
docs.kernel.org/driver-api/ipmi.html.

[Muralidhar et al.(2012)] R Muralidhar, H Seshadri, V Bhimarao, V Rudra-
muni, I Mansoor, S Thomas, B Veera, Y Singh, and S Ramachandra. 2012.
Experiences with power management enabling on the Intel Medfield phone.
In Proc. of Linux Symposium. 35–46.

[Oracle(2014)] Oracle. 2014. Oracle Integrated Lights Out Manager (ILOM)
3.0 HTML Documentation Collection. https://docs.oracle.com/cd/
E19860-01/E21549/toc.html.

[OSDev Wiki(2023)] OSDev Wiki. 2023. AML — OSDev Wiki. https://wiki.
osdev.org/AML. [Online; accessed 25-January-2023].

[Ottaviano et al.(2022)] Alessandro Ottaviano, Robert Balas, Giovanni Bam-
bini, Corrado Bonfanti, Simone Benatti, Davide Rossi, Luca Benini,
and Andrea Bartolini. 2022. ControlPULP: A RISC-V Power Controller
forăHPC Processors withăParallel Control-Law Computation Acceleration.
In Embedded Computer Systems: Architectures, Modeling, and Simulation,
Alex Orailoglu, Marc Reichenbach, and Matthias Jung (Eds.). Springer
International Publishing, Cham, 120–135.

[Richardson and Ruby(2008)] Leonard Richardson and Sam Ruby. 2008. REST-
ful web services. " O’Reilly Media, Inc.".

[Seshadri et al.(2004)] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla.
2004. SWATT: softWare-based attestation for embedded devices. In IEEE
Symposium on Security and Privacy, 2004. Proceedings. 2004. 272–282.
https://doi.org/10.1109/SECPRI.2004.1301329

27

https://www.hpe.com/psnow/doc/4AA6-1727ENW
https://www.hpe.com/psnow/doc/4AA6-1727ENW
https://www.hpe.com/ch/de/servers/integrated-lights-out-ilo.html
https://www.hpe.com/ch/de/servers/integrated-lights-out-ilo.html
https://doi.org/10.1145/3485497
https://learn.microsoft.com/en-us/azure/security/fundamentals/measured-boot-host-attestation
https://learn.microsoft.com/en-us/azure/security/fundamentals/measured-boot-host-attestation
https://docs.kernel.org/driver-api/ipmi.html
https://docs.kernel.org/driver-api/ipmi.html
https://docs.oracle.com/cd/E19860-01/E21549/toc.html
https://docs.oracle.com/cd/E19860-01/E21549/toc.html
https://wiki.osdev.org/AML
https://wiki.osdev.org/AML
https://doi.org/10.1109/SECPRI.2004.1301329

[Super Micro Computer Inc.(2023)] Super Micro Computer Inc. 2023. Super-
micro Server Management (Redfish API). https://www.supermicro.com/
en/solutions/management-software/redfish.

[The Linux Foundation(2021)] The Linux Foundation. 2021. OpenAPI Specifi-
cation v3.1.0. Version 3.1.0.

[The OpenBMC Community(2022a)] The OpenBMC Community. 2022a.
IPMI Architecture. https://github.com/openbmc/docs/blob/master/
architecture/ipmi-architecture.md.

[The OpenBMC Community(2022b)] The OpenBMC Community. 2022b. Red-
fish. https://github.com/openbmc/bmcweb/blob/master/Redfish.md.

[The OpenBMC Community(2023)] The OpenBMC Community. 2023.
OpenBMC. https://github.com/openbmc/openbmc.

[The TianoCore Community(2021)] The TianoCore Community 2021. EDK II.
The TianoCore Community.

[The U-Boot Development Community(2021)] The U-Boot Development Com-
munity 2021. The U-Boot Documentation. The U-Boot Development Com-
munity.

[UEFI Forum Inc.(2022a)] UEFI Forum Inc. 2022a. Advanced Configuration
and Power Interface (ACPI) Specification. Release 6.5.

[UEFI Forum Inc.(2022b)] UEFI Forum Inc. 2022b. Unified Extensible
Firmware Interface (UEFI) Specification. Release 2.10.

[Wei and Pu(2005)] Jinpeng Wei and Calton Pu. 2005. TOCTTOU Vulnera-
bilities in UNIX-Style File Systems: An Anatomical Study. In Proceedings
of the 4th Conference on USENIX Conference on File and Storage Tech-
nologies - Volume 4 (San Francisco, CA) (FAST’05). USENIX Association,
USA, 12.

A Overview of the ThunderX Boot Process on
Enzian

The ThunderX-1 CPU on the Enzian platform has ARMv8 AArch64 cores and
has four Exception Levels (EL): the EL3 for the secure monitor, the Arm
Trusted Firmware (ATF) in this case; the EL2 for the hypervisor, if any; the
EL1 for the operating system kernel, for example Linux; and the EL0 for user-
space applications. On Enzian we have control of the EL3 software by flashing
the bootfs1 from the BMC2.

1https://unlimited.ethz.ch/display/sgnetoswiki/Enzian+Software
2https://unlimited.ethz.ch/display/sgnetoswiki/Enzian+BMC#

EnzianBMC-FlashingfromLinux

28

https://www.supermicro.com/en/solutions/management-software/redfish
https://www.supermicro.com/en/solutions/management-software/redfish
https://github.com/openbmc/docs/blob/master/architecture/ipmi-architecture.md
https://github.com/openbmc/docs/blob/master/architecture/ipmi-architecture.md
https://github.com/openbmc/bmcweb/blob/master/Redfish.md
https://github.com/openbmc/openbmc
https://unlimited.ethz.ch/display/sgnetoswiki/Enzian+Software
https://unlimited.ethz.ch/display/sgnetoswiki/Enzian+BMC#EnzianBMC-FlashingfromLinux
https://unlimited.ethz.ch/display/sgnetoswiki/Enzian+BMC#EnzianBMC-FlashingfromLinux

The CPU boots from the NAND flash upon power-on, loading the Board
Development Kit (BDK)3 and runs it in EL3. The BDK then initialises various
hardware devices, including the UART used by EFRI between the CPU and
the BMC (this is called the UAA on ThunderX [Cavium Inc.(2016)]) and the
DRAM timing parameters (currently this is hard-coded). After finishing, the
BDK then chain-loads the Arm ATF Boot Loader stage 1 (BL1) in EL3. At the
time of writing, there is an on-going effort4 to make the BDK and ATF code-
bases converge, in order to reduce redundant and often contradictory hardware
initialisation, as well as making use cases of EFRI such as storing DRAM pa-
rameters possible. This will also bring new upstream features in ATF (renamed
to TF-A), such as the SDEI infrastructure.

The ATF BL1, after finishing its platform early initialisation, loads BL2,
which in turn loads BL31, the EL3 Runtime Firmware [Arm Limited(2013)], in
EL3. BL31 sets the EL3 exception vector to allow processing of service calls
(SMC), loads the next-stage boot loader, the TianoCore EDK II UEFI5, and
returns to it in EL1. The UEFI supplies the device tree in ArmPlatformPkg and
loads the GNU GRUB [Free Software Foundation, Inc.(2021)], which in turn
loads the Ubuntu Linux kernel.

B Code Listings
We show the code listings in this section. Note that the listings are simplified
for clarity; full resource repositories can be found in Appendix C.

List of Code Listings
1 Schema for the CPU power switch 30
2 Codegen logic for the CPU power switch 30
3 Generated endpoint database for the CPU power switch 31
4 Backend class for the CPU power switch 31
5 PSCI handler . 32
6 Schema for power rail telemetry 32
7 Codegen logic for power rail telemetry 33
8 Generated endpoint database for power rail telemetry 33
9 Backend class for power rail telemetry 34
10 Linux userspace client for power rail telemetry 34

3https://gitlab.inf.ethz.ch/PROJECT-Enzian/enzian-bdk
4https://gitlab.inf.ethz.ch/PROJECT-Enzian/arm-trusted-firmware-enzian-port/

-/tree/v2.6-enzian
5https://gitlab.inf.ethz.ch/PROJECT-Enzian/enzian-uefi

29

https://gitlab.inf.ethz.ch/PROJECT-Enzian/enzian-bdk
https://gitlab.inf.ethz.ch/PROJECT-Enzian/arm-trusted-firmware-enzian-port/-/tree/v2.6-enzian
https://gitlab.inf.ethz.ch/PROJECT-Enzian/arm-trusted-firmware-enzian-port/-/tree/v2.6-enzian
https://gitlab.inf.ethz.ch/PROJECT-Enzian/enzian-uefi

1 actions:
2 put: &put
3 name: put
4 args: [p]
5 retval: [err]
6 get: &get
7 name: get
8 args: []
9 retval: [err, T]

10 aliases:
11 rw: &rw [*put, *get]
12 ro: &ro [*get]
13 binary_switch: &binary_switch
14 type: binary
15 actions: *rw

(a) Shared anchor for binary
switches.

1 power_switch: &power_switch
2 name: power
3 subsystem: power
4 <<: *binary_switch
5 bmc:
6 - class: [cpu]
7 impl: switch-cmdline
8 do_off:

/home/root/pengxu/shell.py bringup
'cpu_power_down()'

↪→

↪→

9 <<: *power_switch

(b) Enzian-specific CPU power node. No-
tice that the power switch is specialised into
a regular binary switch by setting the ac-
tion name and subsystem properties.

Listing 1: Platform-agnostic and platform-specific schema for the CPU power
switch. Irrelevant nodes are removed for clarity.

1 def gen_ep(ep: Endpoint):
2 ...
3 elif ep.impl.startswith('switch'):
4 if 'cmdline' in ep.impl:
5 ep_impl = f'CmdlineSwitch("{frn}", {actions}, '
6 for attr in ['on', 'off', 'query']:
7 a = f'do_{attr}'
8 if hasattr(ep, a):
9 ep_impl += f'{a}="{getattr(ep, a)}", '

10 ep_impl += ')'
11 else:
12 assert False, 'unknown switch impl ' + ep.impl
13 ...

Listing 2: Codegen logic for generating endpoint database entries for binary
switches. The generator only accepts switch-cmdline here.

30

1 FRN_EP_MAP["cpu::power"] = CmdlineSwitch("cpu::power", [
2 ActionDesc("put", 1, 1),
3 ActionDesc("get", 0, 2)
4], do_off="/home/root/pengxu/shell.py bringup 'cpu_power_down()'",)
5 FRN_EP_MAP["::power:cpu:power"] = NamespaceImpl("::power:cpu:power", [
6 ("put", FRN_EP_MAP["cpu::power"]),
7 ("get", FRN_EP_MAP["cpu::power"])
8])
9 FRN_EP_MAP["::power:cpu"] = NamespaceImpl("::power:cpu", [

10 ("list", FRN_EP_MAP["::power:cpu:power"])
11])

Listing 3: Generated endpoint implementation entries for the power switch in
the database, according to the schema. Note that the parents : and ::power
are generated later due to presence of other siblings.

1 E_RUNCMD = TypedValue(Error, 6) # EFRI_INTERNAL_ERROR
2 class CmdlineSwitch(DataSource):
3 def _run_cmd(self, action, cmd):
4 if not hasattr(self, f'do_{cmd}'):
5 raise UndefinedActionError(action, self.frn, f'do_{cmd} undefined

for CmdlineSwitch')↪→

6 return subprocess.run(getattr(self, f'do_{cmd}'),
shell=True).returncode↪→

7 def put(self, val: TypedValue):
8 super().put(val)
9 cmd = 'on' if val.val == 1 else 'off'

10 try:
11 ret = self._run_cmd('put', cmd)
12 if ret == 0:
13 return E_OK,
14 else:
15 return E_RUNCMD
16 except subprocess.SubprocessError:
17 return E_RUNCMD,

Listing 4: CmdlineSwitch class for executing a command to implement an
action. Note that the querying state (aka get) is not supported for the power
switch yet due to limitations of the power service. Irrelevant code is removed
for clarity.

31

1 void psci_system_off(void) {
2 char link_buf[PAGE_SIZE]; size_t bytes_written; efri_error_t err;
3 efri_frame_t frame = {
4 .frn = "cpu::power" - (char *)&frame,
5 .action = "put" - (char *)&frame,
6 .role = ROLE_REQUEST,
7 .num_args = 1,
8 .args = { { .ty = EFRI_TY_BINARY, .val.opaque = "0" - (char *)&frame },

},↪→

9 };
10

11 err = efri_frame_marshal((char *)&frame, link_buf, &bytes_written);
12 if (err != EFRI_OK)
13 for (;;);
14 efri_transmit(link_buf, bytes_written);
15 for (;;);
16 }

Listing 5: Handler for PSCI power off request. Note that the argspage is con-
structed by directly computing the pointer differences.

1 power_rail: &power_rail
2 actions: *ro
3 impl: datasource-dbus-power
4 class: [platform, rails]
5 subsystem: telemetry
6 rail_voltage: &rail_voltage
7 name: voltage
8 type: voltage
9 <<: *power_rail

10 rail_current: &rail_current
11 name: current
12 type: current
13 <<: *power_rail

Listing 6: Schema anchors for power rail telemetry.

32

1 def gen_ep(ep: Endpoint):
2 ...
3 if ep.impl.startswith('datasource'):
4 ds_common = f'"{frn}", {ep.type.name.capitalize()}, {actions}'
5 if 'dummy' in ep.impl:
6 ep_impl = f'DummyDataSource({ds_common}, readonly={"ro" in

ep.impl})'↪→

7 elif 'dbus-power' in ep.impl:
8 # ep should have device and monitor properties set
9 assert hasattr(ep, 'device') and hasattr(ep, 'monitor'), \

10 'datasource-dbus-power requires device and monitor set'
11 ep_impl = f'DBusPowerDataSource({ds_common}, "{ep.device}",

"{ep.monitor}")'↪→

12 else:
13 assert False, 'unknown datasource impl ' + ep.impl
14 ...

Listing 7: Codegen logic for generating endpoint database entries for
DBus data sources. The generator accepts datasource-dummy and
datasource-dbus-power here.

1 FRN_EP_MAP["platform:rails:VDD_DDRCPU13:voltage"] =
DBusPowerDataSource("platform:rails:VDD_DDRCPU13:voltage", Voltage, [↪→

2 ActionDesc("get", 0, 2),
3 ActionDesc("subscribe", 2, 1)
4], "pac_cpu", "VMON9")
5 FRN_EP_MAP["platform:rails:VDD_DDRCPU13:current"] =

DBusPowerDataSource("platform:rails:VDD_DDRCPU13:current", Current, [↪→

6 ActionDesc("get", 0, 2),
7 ActionDesc("subscribe", 2, 1)
8], "ina226_ddr_cpu_13", "CURRENT")

Listing 8: Generated endpoint implementation entries for the power rail
VDD_DDRCPU13 in the database, according to the schema. Notice the different
(device, monitor) tuples for the voltage and current endpoints.

33

1 E_DBUS = TypedValue(Error, 6) # EFRI_INTERNAL_ERROR
2 class DBusPowerDataSource(DataSource):
3 @classmethod
4 def _get_service(cls):
5 return dbus.SystemBus().get_object('systems.enzian.Power',

'/systems/enzian/Power')↪→

6 def get(self):
7 try:
8 raw_val = self._get_service().read_device_monitor(self.device,

self.monitor)↪→

9 except dbus.DBusException:
10 return E_DBUS, None
11 return E_OK, TypedValue(self.ty, raw_val)

Listing 9: Simplified DBusPowerDataSource class for the power rail endpoints.

1 #include "libefri.h"
2 int main(int argc, char *argv[]) {
3 int fd = open("/dev/efri_raw0", O_RDWR);
4

5 // fill argspage
6 struct efri_raw_invoke_msg msg;
7 efri_frame_t *frame = &msg.frame.frame;
8 char *cur = msg.frame.aux;
9 frame->frn = push_string(msg.buf, &cur,

"platform:rails:BMC_VCC_3V3:voltage");↪→

10 frame->action = push_string(msg.buf, &cur, "get");
11 frame->role = ROLE_REQUEST;
12 frame->num_args = 0;
13 msg.dest = EFRI_DEST_BMC;
14 msg.size = cur - msg.buf;
15

16 // invoke and print result
17 ioctl(fd, EFRI_RAW_INVOKE, &msg);
18 describe_frame(frame);
19 }

Listing 10: Simplified userspace application for invoking the voltage endpoint
get action. Error checks are omitted for clarity.

34

C Locations of Implementation
The implementation code for EFRI on Enzian is separated into two repositories,
the Enzian ATF repository6 (2f95648), which contains the CPU-side EFRI
ATF service, and the EFRI repository7 (6997f37), which contains the schema
compiler, the Enzian EFRI schema, kernel modules and userspace utility on the
CPU side, and the EFRI service on the BMC side. There are minor changes to
the bringup script in the Enzian BMC Power Management Tools8, as well as
the UEFI repo9 (cbc60ff8cf) for the device tree.

6https://gitlab.inf.ethz.ch/PROJECT-Enzian/enzian-atf
7https://gitlab.inf.ethz.ch/OU-ROSCOE/Students/2022-prj-pengxu/

enzian-firmware-resource-interface
8https://gitlab.inf.ethz.ch/PROJECT-Enzian/enzian-bmc-powermgmt
9https://gitlab.inf.ethz.ch/PROJECT-Enzian/enzian-uefi

35

https://gitlab.inf.ethz.ch/PROJECT-Enzian/enzian-atf
https://gitlab.inf.ethz.ch/OU-ROSCOE/Students/2022-prj-pengxu/enzian-firmware-resource-interface
https://gitlab.inf.ethz.ch/OU-ROSCOE/Students/2022-prj-pengxu/enzian-firmware-resource-interface
https://gitlab.inf.ethz.ch/PROJECT-Enzian/enzian-bmc-powermgmt
https://gitlab.inf.ethz.ch/PROJECT-Enzian/enzian-uefi

	Introduction
	Background and Motivation
	Enzian
	Existing Firmware Protocols
	Motivation

	Protocol Design
	Basic Concepts
	Namespacing and Resource Discovery
	Security and Virtualisation
	Asynchronous Event Mechanism
	Symmetric Client/Actor Design

	Implementation
	The schema compiler
	CPU
	BMC
	FPGA

	Evaluation
	Case studies
	Performance

	Discussion
	Conclusion
	Overview of the ThunderX Boot Process on Enzian
	Code Listings
	Locations of Implementation

