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Abstract

Declarative power sequencing solves the difficult and tedious problem of bringing up and
managing the power resources of a computing platform by describing the platform in a
declarative model and applying constraint solving to obtain correct power sequences from
the model. To date these generated power sequences are wholly executed on the board
management controller (BMC). However, some platforms provide specialized hardware for
the purpose of power sequencing which goes unused. The Enzian research computer for
instance features two power sequencing Complex Programmable Logic Devices (CPLDs)
which the BMC remote controls when executing power sequences. The goal of this
thesis is to devise an algorithm to partition a generated power sequence such that it
can leverage the capabilities of specialized hardware and to generate instructions for the
power sequencing CPLDs on Enzian.
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1 Introduction

The process of gradually powering up different parts of the platform in order seems to be
a straight forward task. However, with the ever-growing complexity of modern computing
platforms which are home to a host of coprocessors the task of turning all devices on in
the correct sequence becomes harder. Each device comes with its own voltage demands,
sequencing constraints, and with this more complexity. Until recently a programmer
would need to tame all this complexity by hand and configure, sequence, and monitor the
platform without much help. But this task is tedious and error-prone and it is easy to
make a mistake and end up with a cloud of the magic blue smoke that never comes back.

1.1 State of the Art

In order to address this complex task the idea of declarative power sequencing was born
[1, 2]. This approach models a platform with a declarative model and specifies the
constraints on the platform within this model. Then constraint solving is applied to
obtain a correct-by-construction power sequence. This sequence is then executed by the
board management controller (BMC) which controls the entire platform. This approach
not only prevents errors of oversight, but it also enables easier maintenance of the power
sequence as one does not need to fiddle with the intricate monolith of a handwritten
sequence.

Further advances have enabled the optimization of certain aspects of the power sequence
like the length of the sequence or the power consumption of the platform [3]. This work
has also placed a bigger emphasis on computing and optimize power sequences using
optimization modulo theories.

None of these works have covered low-level detail about the implementation of power
sequence instructions on the executing devices until [4]. This work covered the generation
of C-code to dispatch instructions for the Inter Integrated Circuit (I2C) bus based a
generated power sequence to control fans for the purpose of thermal control.
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1.2 Contributions of this Thesis

Some platforms have special purpose hardware dedicated to power sequencing. For
instance the Enzian research computer has two power sequencing Complex Programmable
Logic Devices (CPLDs) included on the baseboard. However, because power sequences
are to date only executed on the BMC we cannot take advantage of these CPLDs.

The key contribution of this thesis is the presentation of an algorithm that partitions
power sequences among all controllers on a computing platform such that all of them
are able to execute parts of the power sequence. In order to achieve this we present a
platform model based on [3] where busses and bus actions are modelled explicitly and a
model for sequences also based on [3] with a precisely defined semantics for which devices
may execute a given instruction at what time.
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2 Background

In this chapter we will cover some background which helps with the understanding of the
rest of the thesis.

2.1 Enzian

Enzian [5, 6] is a research computer purpose build by the Systems Group at ETH. It
features a server grade ThunderX CPU on one node and a high-end FPGA on the other
node. The two nodes are connected by a high-bandwidth cache-coherent interconnect.
These features make highly-flexible access patterns possible that enable systems research
on modern hardware that enables novel offloading techniques as they are applied in
industry today but not possible to research on commercial off-the-shelf hardware.

The complex architecture of the Enzian also calls for advanced platform management
techniques. The Enzian board features a baseboard management controller with an
integrated FPGA as well as two specialized power sequencing CPLDs. Because everything
on Enzian is built by the Systems Group, this enables access into parts of the firmware
which are usually not accessible to research like the power sequencing of the platform.
From this a line of research in to power sequencing [1–4] (see also section 3.1), which this
thesis is part of, started.

2.2 Baseboard Management Controller

The baseboard management controller, or short BMC, is a device that manages all the
devices on the mainboard of a computing platform and monitors platform parameters like
voltages, temperatures and much more [7]. It is the first thing that runs when turning a
computer on because its job is to bring up the platform and start the boot process and it
is the last thing that stops running.

Its job of managing the entire platform comes with wide-reaching privileges which makes
it a prime target for attacks. Despite having the highest privileges it also used to
have the lowest visibility and inspectability [7]. That is until the open-source BMC
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(a) Programmalble logic array [12, figure 4] (b) Programmalble array logic [12, figure 5]

Figure 2.1: Elementary building blocks of CPLDs.

implementations openBMC [8], u-bmc [9], and RunBMC [10] came along. All of this
makes the BMC an interesting research subject.

2.3 Complex Programmable Logic Devices

The Enzian board includes two ispPAC-POWR1220AT8 Complex Programmable Logic
Devices (CPLDs) for power sequencing and monitoring. For convenience and legibility
we will henceforth refer to them as ispPACs. In this work we want to offload parts of
power sequences to these CPLDs. For this reason we look at what potential benefits and
drawbacks we might get from using CPLDs for this purpose.

2.3.1 What is a CPLD?

At their core CPLD consist of simple function blocks. These are based on programmable
logic blocks and depending on the CPLD add some extra capabilities [11]. One possible
base block is a programmable logic array (PLA) which consists of a programmable
AND-interconnect and a programmable OR-interconnect (see figure 2.1a). For simpler
applications designers also base their functional blocks on programmable array logic
(PAL) which is similar to PLAs in that it has a programmable AND-interconnect but
reduces complexity by having a fixed OR-interconnect (see figure 2.1b).

Such function blocks are then arranged in macrocells and connected by a programmable
interconnect. This interconnect consists of a large switch matrix. It is able to connect all
the inputs to the CPLD and outputs of all macrocells with the input of any macrocell
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Figure 2.2: Architecture of a CPLD [12, figure 6]

[11] (see figure 2.2). Typically, the output of each macrocell has a dedicated output pin
on the CPLD.

In order to store the program CPLDs make use of non-volatile memory technology like
EEPROM or Flash memory. These program stores are then flashed using a JTAG serial
interface. Further, some domain specific functions are added directly onto the die with
the CPLD and connected to the interconnect so the CPLD can compute with provided
values or provide input [11].

2.3.2 Advantages of CPLDs

CPLDs are best suited for simple applications due to them containing only a limited
number of logic gates. More complicated applications are better accomplished using an
FPGA. However, at these simple tasks CPLDs excel.

First and foremost, is the execution of a CPLD fully deterministic, because it is fully
determined by logic formulas. Due to their programmable interconnect CPLDs have a
deterministic signal delay which is also quite low compared with an FPGA. Because a
CPLD operates at a reasonably low operating frequency and its operations are quite
simple its power consumption is low enough so we do not need to care about thermal
management. Because CPLDs have their programs stored in non-volatile memory, they
do not need a special bootstrapping process or external memory storing the program as
opposed to most FPGAs.
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Figure 2.3: Block diagram of the ispPAC power sequencing CPLD [13, figure 1].

2.3.3 The ispPAC power sequencing CPLD

The Enzian baseboard features two ispPAC power sequencing CPLDs which we are
targeting to execuute power sequences on in this thesis. In this section we have a closer
look at the device and how to program it.

Overview The ispPAC features 12 analog voltage monitor inputs, six digital inputs,
16 digital outputs as well as four programmable timers an I2C slave interface, and a
JTAG interface for programming (see figure 2.3, there are more features we do not use
on Enzian). It is powered by a 48 macrocell CPLD which can be programmed using the
PAC-Designer tool.

Voltage Monitors Each voltage monitor features two programmable voltage trip points,
a lower trigger voltage and an upper trigger voltage, which return false if the input voltage
is below the programmed voltage and true if it is above. The upper trigger is available to
the CPLD on a pin VMONxA and the lower trigger on VMONxB. By programming these
with over and under voltage thresholds we can determine if a wire has been powered
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correctly, which is the case if the lower trigger is true and the upper and the upper trigger
is false. We can also program the monitor pin to operate in windowed mode, which is
true in the condition described before. If the windowed mode is configured for a pin then
the A pin shows the window value instead of the upper trigger [13]. The voltage triggers
must be configured at compile time and they can be updated with a bus command. The
output of all triggers can also be read over the bus.

Input Pins The six digital input pins provide digital input for the ispPAC. The pin IN1

can be configured to take its value from the pin itself or it can be controlled through the
JTAG interface. The other input pins IN[2..6] can be configured to take their input from
the pin or an I2C-register. Both of these configurations cannot be changed at runtime.

Output Pins The 16 digital output pins are the primary outgoing interface of the
ispPAC to the outside world. These pins can either be controlled directly by the CPLD
or from an I2C-register. This configuration can also not be changed at runtime. Further,
we can configure the reset value for the outputs pins after a reset to be high or low. The
pin OUT5 is special because it can be used as a normal output or like on Enzian as an
SMBus alert pin [13].

Timers The ispPAC features four programmable timers which can individually be
programmed to times ranging from 32 µs up to 1.96 s. They can be used in the CPLD
for timeouts or pausing the execution.

Programming The ispPAC is programmed and configured in the PAC-Designer GUI-
Program [14]. The program and configuration are then compiled to a JEDEC bitstream
and can then be flashed with the Diamond programmer over the JTAG interface. Un-
fortunately, the program does not take any file input except its proprietary XML-based
format to store projects.

PAC-Designer provides the LogiBuilder language as an abstraction for programming
the ispPAC. Unfortunately, the closest thing to a specification can be found in the
PAC-Designer manual [14]. We quickly explain the instructions used in this work.

The Begin Startup Sequence and Begin Shutdown Sequence enable respectively disable ex-
eceptions. The outptut statement simply assigns a value to an output pin, e.g. OUT8 = 1.
We can wait for a boolean expression to be true with Wait For <boolean expr> which
pauses the execution until the expression is satisfied. Further, we can wait for a timer
with Wait For TIMER<number of timer> which pauses execution for the time programmed
into the timer. As one would expect, the Halt instruction ends the execution of that
state machine.
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The programming model of an ispPAC is based on state machines. In fact, it can run
multiple state machines at the same time. Inside a state machine we can program a
sequence. Further, every state machine can have exceptions which are boolean expressions
that interrupt the execution of the sequence, perform some action and jump to a specified
step in the sequence when the expression is satisfied [14].

2.4 The I2C Bus

The Inter Integrated Circuit bus, or more commonly I2C for short, is a low-speed control
bus for communicating among components on a circuit boards [15]. It follows a simple
master/slave relationship on every device (the I2C multi-master capabilities are out of
scope in this work) and uses only two wires — one clock wire SCL and a data wire SDA —
which is why it is popular as a simple and low-level means of communication for BMCs
to control the devices on their board. We will not go into the low-level details which can
be found in [4] and [16], which also provides an interesting comparison with other serial
busses and other protocols with similar purposes.

On a high level, a bus master on an I2C bus can send messages addressed to individual
slave devices which are then, depending on the received data, to send some data in
response. Slave devices are only able to write to the bus when they are called upon by
the bus master.

Because of the popularity and simplicity there are bus protocols built on top of I2C
and which can coexist on the same bus. There is the System Management Bus (short
SMBus) which markets itself as a protocol specifically for system and power management
[17]. The SMBus specification lays out a set of transactions with possibly bidirectional
transfers. It also features rudimentary remote procedure call capabilities on slave devices.

The Power Management Bus (PMBus) protocol is an extension the SMBus protrocol and
defines a set of commands that abstract a power management device [17]. For example
PMBus provides explicit commands for setting output voltages on voltage regulators,
setting fault limits for measurements and turning outputs off and on.

All of these protocols are used for managing the devices on the Enzian baseboard.
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3 Related Work

This chapter provides a survey on literature covering topics relevant for this thesis.

3.1 Declarative Power Sequencing

The research area of declarative power sequencing is — as far as we can tell — relatively
young and was kicked off with Jasmin Schult’s bachelor thesis [1] and the resulting paper
[2] presented at EMSOFT 2021. In her thesis she laid the groundwork for declarative
power sequencing by analyzing the power management of platforms and abstracting this
into a declarative model which did not only describe the devices on the platform but also
the power related constraints like voltage limits and sequencing constraints. By applying
constraint solving to the model she was able to generate correct by construction power
sequences which eliminate the tedious and error-prone process of implementing these
by hand. She then went on to model the Enzian platform and applied her sequencing
techniques to it and was able to successfully demonstrate that a complex server grade
computing platform could be powered on and off using power sequences generated from
a model of the platform.

Based on this work Morith Knüsel applied optimization modulo theories to the problem
and was able to optimize aspects of power sequencing using a SAT solver [3]. With these
optimizations he was able to produce much more compact sequences which are able to
execute multiple independent instructions in parallel. Further, he was able to reduce
the power consumption of a platform by optimizing the sequence such that lower than
normal voltages were programmed in the regulators while still respecting the constraints
of all devices.

In his Bachelor thesis, Linus Vogel tackled the generation of C code for the control of an
as of yet unmodelled fan controller over I2C [4]. His model explicitly contained busses
and their commands. Special attention was given to the issue of non-compliant devices
that violate the bus standard advertised in the datasheet.

While the topic of power management is mainly studied in the works outlined above, we
were able to find some related work which tries to achieve similar goals in the realm of
power management.
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Especially interesting is the work surrounding the Unified Power Format (UPF) standard
[18] which provides a method to specify power intent for an electronic design. It facilitates
the consideration of power concerns in the design of low power hardware. With ever
smaller semiconductor technologies and the “power wall” that has been hit. UPF shifts a
former purely physical implementation concern early into the design process. It enables
the hardware designer to specify power semantics inline in HDL designs. Around these
specifications a small formal methods community has emerged with the goal of verifying
the correctness of power techniques in modern chips [19–21]. An especially interesting
paper addresses the challenge of hardware-software-interaction in power management
[22] and provides an approach for using formal methods to verify this interface.

A different line of work around UPF is to enable higher level modelling of power man-
agement specifications, which could be viewed as a step in the direction of a declarative
model of power management aspects. One such work revolves around extending SystemC
[23]. Another models power consumption on a system level using timed transaction-level
model of hardware [24].

3.2 Code Generation for CPLDs

The goal of this thesis is to generate code for CPLDs in order to execute power sequences
generated from a delclarative model on them. However, as we found out there is next to
no work published on high-level sythesis for CPLDs. While there is a host of literature
on synthesizing low-level hardware descriptions and optimize logic formulas [25–27] we
were mostly unsuccessful in finding works with targeted CPLDs to execute high level
code.

A notable exception is the ConCISe [28] which uses a CPLD as a reconfigurable functional
unit in a reduced instruction set processor. In the compiler required functional units were
identified and clustered over the execution of the program and the CPLD would then
be reconfigured to provide the desired functional unit at the appropriate time during
the execution on the CPU. This is the only work we found, where high level code was
compiled and synthesized to run on CPLDs.

We did however find a host of work describing how CPLDs are used in different applications.
Examples include telemetry gathering in nuclear power plants [29], a teaching auxiliary
board to enable student experiments [30], and a reconfigurable communication architecture
[31].

While we were not able to find a lot of previous work on high-level synthesis for CPLDs
there is a lot of work in the field of high level synthesis for FPGAs. Practical examples
include using iterative synthesis based on UML models and profiles to generate HDL in
a hard- and software co-design approach [32], a dynamically reconfigurable IoT research
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platform based on a Flash FPGA[33], and an FPGA-based surveillance platform with an
image processing core built with a C-to-HDL compiler[34]. Further, a proposal for code-
generation techniques for C-based high-level synthesis from a domain specific language
embedded in C++ targeting FPGAs [35] and a framework for compiling C programs to
VHDL consisting of data-flow analysis and loop transformations [36].
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4 Observations & Goals

In this chapter we take a close look at the problem of using CPLDs in power sequencing
and discuss possible ways to solve it at a high level. On the way we will identify challenges
we will need to address in the design of our models for the platform and the sequence
itself. We do this by trying to apply our goal of leveraging CPLDs for power sequencing
to the Enzian platform.

4.1 Mapping Power Sequences to CPLDs

Our goal in this work is to extend the power sequencing techniques from previous works
[1, 3, 4] to generate instructions on CPLDs. The first question we must ask ourselves is
whether we can express power sequences on the CPLD.

We try to answer this by comparing the power sequences generated from the tools by
Knüsel with the LogiBuilder instruction set as described in the software manual for
PAC-Designer [14], which is used to program the ispPAC power sequencing CPLD
present on the Enzian baseboard. In this comparison we should see how good the former
maps onto the latter.

The ispPAC as it is connected on the Enzian can read if voltages are in a given range
and read the value of a logical wire. Further, it can drive logical values. Below, there
is a comparison between such instructions from a power sequence on the left and a
corresponding LogiBuilder instruction on the right.

Reading, if a voltage is within a given interval:

(2.5
monitor
wire.12v-cpu1-psup
((pac-fpga VMON1 voltage (8500 13900))))

Step 3: WAIT FOR VMON1

Note that the voltage monitoring pins can be configured in different ways. In this example,
VMON1 is configured in window mode.

Reading, a logical value:
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(2.5
monitor
wire.psup-pgood
((pac-cpu IN1 value (_ bv1 1))))

Step 3: WAIT FOR IN1

Writing, a logical value:

(6
set-to
(_ bv1 1)
(pac-fpga OUT9)
wire.en-vccint-fpga)

Step 6: OUT9 = 1

Further, the CPLD can handle optional and exceptional control flow as well as timeouts
or waiting for a given amount of time[14].

The comparison above suggests that power sequences map directly onto the CPLD.
Therefore, we should be able to simply take a power sequence and partition it among the
available controllers. This approach leads to a separation of a front-end and a back-end in
the generation of power sequences, where the front-end is the generation of the sequence
and the back-end is the partition of that sequence.

4.2 Multiple controllers

In order to leverage the CPLDs for power sequencing we need to program them beforehand,
as they cannot be reconfigured at runtime. Thus, we need to afford them some agency
when executing the sequence. However, in previous works there was the assumption
that there could only be one controller controlling the entire platform [1]. We do not
necessarily need to break with this assumption, as we could simply model the subsystems
controlled by the CPLDs as their own platform, where one CPLD is the sole controller.
This workaround is predicated on the possibility that the sequence executed by the
CPLDs can be executed independently of the rest of the platform.

While the power sequencing CPLDs on Enzian are able to execute power sequencing
instructions that are within their capabilities, there is a host of operations only the BMC
can perform. For one, the BMC is the only I2C bus master and as such the only device
able to configure devices or observe certain wires. Further, it is the only device that can
sequence the clocks necessary for powering up the CPU and FPGA.

Due to this not even the manual power sequence for Enzian [37] contains independent
subsequences for the two CPLDs even though the sequence would permit it if the voltage
check of the DDR voltages were not only possible via the BMC. Therefore, we must drop
the unique controller assumption.
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4.2.1 Relaxing assumptions

The fact that controllers have different abilities suggests that different controllers might
have different amount of information about the platform. This raises the question whether
all controllers have sufficient information to be able to know when to execute the next
step in the sequence.

But what information is needed for a controller to be able to execute an instruction? An
instruction takes the platform from one known state to another known state. To execute
the instruction the controller must realize that the platform has reached the initial state
for the instruction and that it can now execute that instruction. If the controller is not
able to monitor enough values, it must get this information from somewhere else. Since
all controllers together must be able to observe the entire platform state, some other
controller could communicate that information to our executing controller. However, not
all controllers might be able to communicate with other controllers. For example, the
CPLDs on the Enzian baseboard can only receive communication from the BMC, but
they have no way of sending information to the BMC (which is not really necessary as
the BMC can observe all pins of the CPLDs via the bus).

Therefore, our platform model must capture the communication abilities between con-
trollers in order for us to determine which controllers are able to receive information
from fellow controllers.

4.2.2 Where to execute an instruction

Without the unique controller assumption, we might have more than one controller able
to execute some instructions. For example, any voltage monitored by the ispPAC can
also be monitored by the BMC using bus commands. Therefore, a decision is needed to
determine on which controller an instruction is executed.

In order to make a decision, we need to be able to determine from our model which
controller can control which parts of the platform. This is easy to do for pins connected
with wires. Busses, however, are much more complex. Therefore, we need a clear interface
with concise semantics for busses in our platform model.

These observations suggest, that we do not need to decide on where some instruction
is executed at the time of generating the sequence and instead make this decision later.
Therefore, we take the approach in this work to seperate the process of generating states
and sequences from operating on the generated sequence and generating executable
instructions for devices. We consider the first concern to be the “frontend” of declarative
power sequencing and the latter as the “backend” (see figure 4.1 on the following page).
The crucial step in the backend in order to leverage multiple controllers will be to partition
the generated sequence into parts that are executed by multiple controllers.
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Figure 4.1: Overview over the declarative power sequencing pipeline.

4.3 Summary

In this chapter we looked at our problem of incorporating CPLDs in power sequencing at a
high level. We realized that it is sufficient to merely partition a generated power sequence
onto all available controllers instead of changing the sequence generation. Having multiple
controllers brings its own challenges, however. Our platform description must be able
to answer which controller can manipulate which parts of platform state and which
controllers can communicate with each other. Further, we settled on an approach where
we partition sequences generated by the frontend to determine which controller executes
which instructions.
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5 Platform Model

In this chapter we devise a model that describes a platform and its devices with the goal
to abstract the complexities of hardware for the purpose of generating and manipulating
power sequences. We design this model with in mind that it needs to answer the questions
we devised in the previous chapter.

To start, we present a very basic platform model without any busses. Then we add
in any bus related modifications step by step. Previous work [1, 3, 4] provides a basis
for the presented model, and even more so for the basic model. There are however
subtle differences, so we find it easier to understand and more convenient to present
the complete model instead of merely pointing out differences. Since this work is only
concerned with generating code for multiple controllers our model leaves out all things
related to demands, constraints and state or sequence generation.

We denote our model in YAML and provide parts of the model with <placeholders> for
parts of the model described in a different place. Whenever a list is described, we provide
a description of an element as the first item in the list. The lists may contain more
elements of the described format.

In this work we denote access to structures with a dot notation as it is used by some
programming languages, i.e. the value of some field f of a structure s can be represented
by s.f .

5.1 A basic Model

Here we build a basic platform model without any busses in order to have a baseline
model. This section is mostly a summary of [3, section 2].

5.1.1 What is a platform?

Before we can model a platform we need to be sure what a platform really is. The scope
of a platform varies depending on the purpose it is serving. For the purpose of power
sequencing it is intuitively clear that the platform must contain all devices and wires
contained in the power and clock tree.
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For our purposes we use a slightly different definition than [1].

Definition 5.1 (Platform). A platform is a collection of device instances connected by
wires.

Since all instances, wires and devices must be described this gives rise to the general
structure of our model as already presented in [3].

1 devices:
2 - <device definition>
3 platform:
4 name: <platform name>
5 instances:
6 - <instance definition>
7 wires:
8 - <wire definition>

A platform is only useful if it carries some kind of state. For our goal of executing power
sequences, we are primarily interested in the state of all wires, as they conduct the power
we seek to provide [1]. However, we are also interested in certain internal state of devices
and device instances, as they behave differently based on configuration. In fact, we need
to sequence certain device configurations explicitly [3]. We use the definition of platform
state given by [3, p. 8].

Definition 5.2 (Platform State). A platform state is determined by the states of all
devices and wires which comprise the platform.

5.1.2 Devices

Devices are the building blocks of platforms. They serve as an abstraction for the
integrated circuits (ICs) on the PCB. However, there is not a one-to-one mapping of a
device to an IC as a real IC will often need peripheral ICs or the internal sequencing
of an IC is so complex that we model it as multiple devices [3]. Our abstraction should
provide a clean interface for the purposes of sequencing.

Different devices serve different purposes. Therefore, we model three distinct device kinds
[1, 3]: producers, consumers, and controllers. While these device kinds have differences
in their behavior, they do share a common interface: input and output pins. Therefore,
we are now able to describe the basic structure of device descriptions:

1 name: <device name>
2 kind: <device kind>
3 inputs:
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4 - <input pin description>
5 outputs:
6 - <output pin description>

Device Kinds

Producers take usually take some platform resource as input and then provide a platform
resource as output. A good example of a producer is a voltage regulator that takes some
voltage as input and outputs a different voltage.

Consumers only consume platform resources. They do not have output pins for the
purpose of power sequencing. Examples of consumers are CPUs or FPGAs.

Controllers are the producers which coordinate the sequencing of the platform. On
Enzian the controllers are the BMC and the two CPLDs. We are able to fully determine
their behavior with respect to managing other devices on the platform. In case of the
BMC we do this by generating code that is then executed by it. But we might also
generate Verilog code and then build a controller fully in hardware. This controller might
not be reconfigurable, but we are still able to fully determine its behavior of coordinating
the platform. In fact, the only requirements we have on controllers is that we are able to
fully control them by generating code and that they implement the interface described in
the basic model of this section.

Pins

Pins are the interfaces of devices to the rest of the platform. They are distinguished by
names, which are unique on a per-device basis. Further, Pins are typed in the sense that
they can only understand and operate one kind of value. There are three signal types [3]:

• voltages of direct current (kind: dc),

• frequencies of alternate current (kind: freq), and

• logical values of width one or more (kind: logical).

With this we can give the structure of pin descriptions.

1 pin: <pin name>
2 kind: <signal type>

For logical pins we also denote the number of bits (width) the logical signal contains.

1 pin: <pin name>
2 kind: logical
3 width: <signal width>
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5.1.3 Device Instances

A platform may contain the same device multiple times. In order to distinguish these,
we introduce device instances, or simply instances. Instances have a name unique among
all instances and specify of which device they are an instance.

1 instance: <instance name>
2 device: <device name>

5.1.4 Wires

Wires connect multiple instances on a platform. They take the value of its source pin,
which is an output pin of some instance, and drive a set of sink pins, which are input
pins of some instance, to that value. In that sense wires are typed, as all sink pins must
be the same kind of pin as the source pin. Wires have a name unique among wires.

1 name: <wire name>
2 from:
3 instance: <instance name of source pin>
4 pin: <name of the source pin>
5 to:
6 - instance: <instance name of some sink pin>
7 pin: <name of some sink pin>

We can consider wires to be directed edges in a graph of pins, where for each wire there
is an edge from the source pin to each sink pin. This graph describes the flow of values
between pins.

5.1.5 Modelling Example

After presenting this simple platform model, we model a real device, that only needs
these basic building blocks. We model the ISL6334 voltage regulator [38] that is used
on the Enzian baseboard as a voltage regulator for the DDR power supplies [6].

The ISL6334 has a DC input pin VCC_DC supplying it with power and a DC output pin
VOUT that outputs the programmed voltage. Further, it features two logical input pins for
enabling the device EN_PWR connected to a controller and EN_VTT connected to the power
supply for the CPU [38].

A specialty of this device is that the voltage is programmed via eight VID pins. Naively,
one would model them as a logical pin with width: 8. However, this would mean that the
model and the sequence have to know the proper conversion between bits and voltages in
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order to generate a correct sequence. Therefore, we abstract these pins to a DC input
pin VID which will have the value of the voltage the device should output. With this the
details about the conversion from voltages to bits is pushed to the level of device drivers.

These considerations yield the following device model.

1 name: ISL6334
2 kind: producer
3 inputs:
4 - pin: VCC_DC
5 kind: dc
6 - pin: VID
7 kind: dc
8 - pin: EN_PWR
9 kind: logical

10 width: 1
11 - pin: EN_VTT
12 kind: dc
13 outputs:
14 - pin: VOUT
15 kind: dc

5.1.6 Determining controllability

As we alluded in the previous chapter, we need to be able to determine which controllers
are able to make which changes to the platform state. Here we provide a short explanation
why this is the case for the presented model.

When controlling the platform we execute instructions that specify which values a
controller must change in order to reach a desired change [3]. Given a wire we need to
change the value of, we can determine which controller controls the source pin and given
a pin we need to change we can follow the wire graph in the opposite direction in order
to find out which controller controls the source pin of the connected wire.

Determining whether a controller can read some value works analogously. Given a wire,
we look for the controllers that are connected to the wire via a sink pin and given a pin,
we determine the wire and do the same thing.

With this we can determine everything we need regarding controllability and observability
in this reduced setting.
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5.2 A more complex Model

The previous section outlined a model using only “conventional” electric signals. Since
most power sequencing nowadays provide some sort of serial interface like I2C, we need
to determine how to integrate the semantics of busses and preserve our ability do fully
determine controllability and observability unambiguously.

We will first decide on how to model busses explicitly and then add different notions
enabled by busses one at a time.

5.2.1 Busses

Serial busses allow for two-way communication between two devices connected to the
bus. In this work we focus on the I2C bus protocol and its derivatives. We know from
(TODO: Reference to background about busses) that I2C busses are simply two wires
connected to multiple devices. Naively we can model them as a wire with its source
pin at the bus-master and it is connected to sink pins at any slave device. Further, we
assume that a bus-master is always a controller. With this we will always be able to
control what changes to the platform state are incurred via bus commands.

Remark. Even though I2C is capable of multi-master operations [16], we assume that
busses in our platform model only ever have one bus-master. If we consider our application
domain where we have controllers that manage producers, a multi-master setting does
not really make sense.

While it is useful to model the bus connection as a wire, the semantics of busses are
vastly different from the wires we described above. If the source pin of a wire is driven
to a certain value, then all pins connected to the wire will also take that value and the
value will have some kind of effect on the device. Conversely, if a bus-master sends a
message over the bus is (usually) is addressed to a specific device. So while all devices
connected to the bus can read the message on the bus, the message will only affect the
device which has been addressed in the message. Further, while we consider the state of
a wire to be part of the platform state, we do not consider the state of the bus wire to be
platform state, as the messages change the platform state by controlling a specific device.
Additionally, busses break the notion that a wire is a unidirectional flow of information
for source to sinks as slave devices reply. This makes any pin connected to a bus both an
input and an output pin.

To model busses on the device level, we introduce a new list for bus pins. A bus pin is
described by a pin name unique to the device and a list of supported protocols. This list
of supported protocol is used for ”typechecking” the model. Our model supports multiple
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bus pins which is required for modelling the BMC on Enzian, which is bus-master for
three distinct busses [6].

1 devices:
2 - name: <device name>
3 inputs: <list of input pins>
4 outputs: <list of output pins>
5 busses:
6 - pin: <bus pin name>
7 protocols: <list of supported protocols>

Each device instance that has a bus pin will have a different bus address (at least if the
instances are on the same bus). Therefore, the instance model needs to be supplemented
with a section on busses, that assigns a bus address in hex to every bus pin of the device
that is connected to a bus.

1 instances:
2 - name: <instance name>
3 device: <device name>
4 busses:
5 - pin: <name of bus pin>
6 address: <bus address in hex>

In order to model the connectivity of the bus and which instance is the bus-master, we
abstract the bus as a single wire. The bus-master is the source of the wire and all slave
devices connected to the bus are sinks on the wire. While busses are not compatible with
the semantics of wires, the information introduced on the device and instance levels is
enough such that we only need the connectivity information in order to be able to reason
about bus actions.

5.2.2 Monitors

Some devices provide functionality to read a value of some pin or some sensor over the
bus. For instance the MAX15301 supports reading the voltage of the input power,
voltage and current of the output power it provides as well as the device temperature by
using the appropriate PMBus commands [39].

But how do we know if a wire can be monitored over the bus? In order to determine this,
we describe in the description of a pin what kind of values can be observed via bus for
the given pin. Note that this is only possible if the device is actually connected to a bus.

1 pin: <pin name>
2 kind: <signal type>
3 monitor: <list of value types which can be observed>
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Depending on the signal type different value types can be observed. For DC pins voltage

and current are possible, for frequency pins only frequency values are possible and for
logical pins we can monitor logical values with matching width (raw bits). Of course the
possible value types also depend on the capabilities of the monitoring device. However,
we do not permit a binary monitor type like [3] in order to model power-good pins with a
binary monitor directly on the output pin. While this might correspond to some PMBus
command, we think that the meaning of a binary monitor is too ambiguous. Therefore,
we either explicitly model a power-good pin (most devices have such a pin anyway) or
achieve the functionality through other types of monitors.

Here an example description of the MAX15301 output power pin.

1 name: MAX15301
2 kind: producer
3 outputs:
4 - pin: V_OUT
5 kind: dc
6 monitor: [voltage, current]

This notion allows us to determine what state some bus-master is able to observe. When
determining which controllers can observe some wire we can now also determine which
controllers can do that via bus. Given some wire we want to observe, we need to find all
pins connected to it that have a monitor for the value type logical (raw bits). For each
monitor we then determine the bus-master for the bus the given instance is connected to
and find another possible observing controller.

5.2.3 Remote Control of Pins

Similarly to monitoring the values of pins via bus, it is also possible to control the output
of pins via bus. In the case of the MAX15301 the output power can be enabled and
disabled via the OPERATION PMBus-command [39]. Again we must settle on how to
incorporate this notion into our model in order to be able to determine which pins can
be remote controlled by which controller.

To this end we supplement the pin description of remote controlled pins by a field
remote: true. With this field we know that this pin may be controlled by any of the
bus-masters of the busses connected to the device.

When modelling the MAX15301 there are actually two possibilities to model the remote
control of the output power. The former makes the output pin a remote.

1 name: MAX15301
2 kind: producer
3 inputs:
4 - pin: PWR
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5 kind: dc
6 monitor: [voltage]
7 - pin: EN
8 kind: logical
9 width: 1

10 outputs:
11 - pin: V_OUT
12 kind: dc
13 monitor: [voltage, current]
14 remote: true
15 - pin: PGOOD
16 kind: logical
17 width: 1
18 busses:
19 - pin: SDA
20 protocols: [PMBus, SMBus, I2C]

The latter makes the pin EN a remote.

1 name: MAX15301
2 kind: producer
3 inputs:
4 - pin: PWR
5 kind: dc
6 monitor: [voltage]
7 - pin: EN
8 kind: logical
9 width: 1

10 remote: true
11 outputs:
12 - pin: V_OUT
13 kind: dc
14 monitor: [voltage, current]
15 - pin: PGOOD
16 kind: logical
17 width: 1
18 busses:
19 - pin: SDA
20 protocols: [PMBus, SMBus, I2C]

While these two possibilities have the same outcome, the second actually breaks with
our notion of how we control a pin. If we were to model the enable pin as a remote, the
bus-master might set it to some value, but the value of the enable line will not have
changed. Therefore, such an approach would lead to inconsistencies with the driving pin
and possible observers of the enable line. For that reason we only ever model a pin as
remote if the effect of the remote control is a change in the value of that pin which is
always an output pin.
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5.2.4 Device Configuration

Devices like the MAX15301 allow even more configuration over the bus. The list ranges
from switching frequency over temperature limits to timing configuration [39]. Of course
such configurations can only occur once a device is powered. Therefore, the sequence
generation explicitly places such configurations in the sequence (TODO: reference to
configuration instructino specification) in order to ensure these sequencing requirements.

Since such configurations occur via bus, the only possible controllers to perform these
actions are bus-masters of connected busses.

5.2.5 Internal State

Some parts of device configuration are even more relevant. An example of this is the
configuration of the output voltage as it is possible via bus on the MAX15301. The value
we configure is essential for the correctness of the sequence which is why it is incorporated
into the model of a device. The value of the output voltage in the MAX15301 is either
read from its internal EEPROM or it is configured via bus [39]. This value is part of the
internal state of the device. So important in fact that we will model it explicitly in our
device model [3].

An internal variable of a device has a name unique among variables of a device. The
value it stores is typed with one type out of the signal-types (dc, frequency, logical with
width). Internal variables also take a default value, which is either a value of its type
or whatever the device happens to have as default value, which we denote with default.
Using default as default value is useful either when we do not care what the initial value
is because we will overwrite it anyway.

1 internals:
2 - name: <variable name>
3 kind: <variable type (one of [dc, freq, logical])>
4 default: <default value>

Just like ordinary device configuration, writing to internal variables can only be performed
by bus-masters of busses connected to the device.

5.2.6 Alerts

Another piece of device configuration especially interesting for our purpose is the configu-
ration of fault levels. Most bus capable devices like the MAX15301 have the capability to
send out an alert if the values for certain values, like input or output voltage for instance,
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are out of bounds. These values are again determined by the sequence generation and
the corresponding configuration instructions are to be found in the sequence.

While fault handling itself is outside the scope of this work, we do need to model how
the warning levels for alerts are configured as the CPLDs on Enzian need these in order
to configure over- and undervoltage thresholds on the monitor pins.

There are three possibilities for programming warning levels: they can be configured
by bus commands, in case of the CPLDs they can also be complied into the initial pin
configuration, and they might already be preprogrammed, as would be possible with the
MAX15301s EEPROM memory.

We model the alert capability by supplementing the pin description with an alert field.
On the right side of the field we specify how the warning levels are programmed using
one of bus-programmed, compiled, or pre-programmed.

1 - pin: <pin name>
2 kind: <signal type>
3 monitor: <possible value types to monitor>
4 remote: <true|false>
5 alert: <bus-programmed|compiled|pre-programmed>

In case of a bus-programmed alert, just like with all bus actions, only bus-masters of
busses connected to the instance may execute such a configuration.

5.2.7 Controller Communication

Since we will have to answer questions regarding which controllers are able to communicate,
we need to model this explicitly as the current model is not able to provide this information.

The notion of two controllers communicating is necessary when there is need to pass
information between them in order to enable the cooperative execution of a power
sequence. Our model does not define a specific format for these communications. The
format needs to be determined for every controller separately in the code that is generated.
The model only cares that these communications are actually possible. In case of the
CPLDs we will see that one bit actually suffices to provide this information.

We model communication among controllers as a directed graph where the nodes are
controller instances and an edge from controller c to another controller c′ denotes that c
can communicate information to c′. Note that we do not allow loops in the communication
graph as communications of a controller with itself would not require any messages, even
though such a communication is obviously possible and thus require c ̸= c′.

We describe this graph in the platform description by listing the edges in the graph.
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1 name: <platform name>
2 instances: <list of instance definitions>
3 wires: <list of wire definitions>
4 controller-communication:
5 - from: <controller instance name>
6 to: <controller instance name>

We define the following predicate for convenience:

Definition 5.3 (Controller Communication). Let c and c′ be two distinct controllers on
a platform p. Let G = (V, E) be the controller communication graph for p. We define
the predicate comm(c, c′) to be true if and only if the edge (c, c′) is an edge in G, i.e.

comm(c, c′) :⇐⇒ (c, c′) ∈ E.

One possible issue when dealing with controller communication is if the communication
is not bidirectional, i.e. for two distinct controllers c, c′ not both comm(c, c′) and
comm(c′, c) are true. In that case the controller that is able to send must be able to
observe at least as much of the platform as the controller that is only able to receive. This
is the case for the BMC which is able to send information to the CPLDs but the CPLDs
are only able to receive communications. But the BMC is able to observe everything
the CPLDs are able to observe, because it can monitor all the input pins of the CPLDs
over the bus. For the purpose of this work we assume that this property holds for all
platforms.

5.3 An Example Platform

In figure 5.1 on the next page we have the drawing of a small Enzian-like platform we are
going to use as an example in this work. In order to stay somewhat coherent with Enzian
naming we will call it “Gamserrugg”. It is designed to show problems that appear on
real world systems like Enzian in a smaller setting.

The yellow boxes are consumers, the green boxes producers, and the red boxes controllers.
Each signal-type of wire has its own color as well. Orange wires have type dc, green wires
type freq, and blue wires type logical with width: 1. The red wire is a bus with the bmc

as bus master.

The full model for Gamserrugg can be found in Appendix A on page 62.
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Figure 5.1: Schematic of the Gamserrugg platform.
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6 Power Sequences

In this chapter we present the structure and semantics of power sequences based on the
previously established platform model. Using the semantics for power sequences, we then
explore how we can partition the execution of sequences among multiple controllers.

6.1 Sequence Model

In this section we present a model for the power sequence we receive from the sequence
generation in the frontend. Most notable for the goal of this work is that this sequence is
agnostic about which controller might execute some instruction in the sequence. The
main information the sequence provides is the relation between instructions established
by their execution times.

A power sequence as described informally in [3] takes a platform from a starting state to
a target state by executing a number of instructions in a given order. This leads to the
conclusion that instructions must operate on platform states. Further we observe that
instructions in such a sequence either modify or observe some part of the platform state.

Definition 6.1 (Instruction). An instruction describes an action to modify or observe
platform state that may be executed by some controller on the platform.

With this definition we can go on to define power sequences.

Definition 6.2 (Power Sequence). A power sequence is a set of instructions which have
an order that determines when they may be executed. The execution of a sequence in
the defined order takes a platform from an initial platform state to a target state.

Note, that this definition does not specify the order of instructions, only that there needs
to be an order.

From definition 5.2 we know that the platform state is composed of the states of platform
components. The set of valid platform states and state transitions is limited by constraints
defined in the model for the purpose of state and sequence generation [3]. For a sufficiently
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large platform (e.g. Enzian) it is likely to happen that the effects of two state transitions
in different parts of the platform do not interact with each other (e.g. enabling some
power line for the CPU and the FPGA on Enzian respectively). The corresponding
instructions may thus be executed at the same time if the sequence generation deems
this safe [3]. To take this into account, we organize instructions into steps.

Definition 6.3 (Step). A step is a set of instructions operating on independent parts of
the platform such that they may be executed at the same time. It is referred to by some
n ∈ N1.
A step contains two substeps: a set of write instructions writes(n) that modify platform
state and a set of read instructions reads(n) that observe platform state.

Remark. We denote the set of natural numbers excluding 0 as N1 := N \ {0}.

We can think of the read substep and read instructions in general as barriers that keep
controllers on lockstep and from running a step ahead.

Further, we deliberately model all instructions as either a read or a write instruction
because at their core reading and writing data is what they actually do. Even waiting
for a given time can be viewed as reading a time from a timer.

6.1.1 Instruction Structure

The definition of instructions (definition 6.1) thus far leaves out details on what informa-
tion the instructions actually carry. From definition 6.3 we know that all instructions are
organized in steps and that there are two types of instructions, namely reads and writes.
Instructions always concern a specific component of the platform like a wire or a device
instance. We call this the endpoint of an instruction. Obviously, instructions must also
carry information what the expected value of a read is or what value is written. This
yields the following structure of an instruction.

1 instruction: <read|write>
2 step: <step number>
3 endpoint:
4 <endpoint description>
5 # for reads
6 read: <read value>
7 # for writes
8 write: <write value>

Endpoints Instructions read or write information from or to a specified component of
the platform. We call this the endpoint of an instruction. Below, we describe all possible
endpoints in a instruction.
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The wire endpoint is one of the most commonly used and refers to a single wire by its
name. The usage of a wire endpoint is only permitted if the wire exists.

1 endpoint:
2 wire: <wire name>

The pin endpoint refers to a pin on a given instance. Using this endpoint in an instruction
is only permitted if the pin on the named instance exists. It is either connected to a wire
or the operation can be done with a bus command. In case of a write instruction this
would be a remote and in case of a read instruction a monitor on the specified pin

1 endpoint:
2 instance: <instance name>
3 pin: <pin name>

The var endpoint enables the modification of internal state on instances. The usage of
this endpoint is only legal if the variable to be modified exists on the specified instance
and the instance is connected to a bus.

1 endpoint:
2 instance: <instance name>
3 var: <variable name>

The device-instance endpoint allows for modification of the internal state of the specified
instance. The usage is only permitted if the specified instance exists and is connected to
a bus.

1 endpoint:
2 instance: <instance name>

The timer endpoint is used to model the wait instruction as a read. It refers to the ability
of a controller to pause its execution for a set amount of time. This is usually achieved by
a wait instruction of the controller. We assume that every controller has this capability
as we could even implement this in hardware with an oscillator and a counter.

1 endpoint:
2 timer: # deliberately empty

Read Instructions The different types of possible read values corresponds with the
possible monitor types. In fact, the instruction is only valid if the read value matches its
monitor type. All read instructions have in common that they prevent the sequence from
advancing as long as they were not able to successfully read their specified read value.

All read values for some electric characteristic (voltage, current, frequency) follow the
same scheme. Since devices have certain tolerances, we want to ensure that endpoints of
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these signal-types are within a minimum and a maximum value. If that is the case the
read is successful.

1 read:
2 min: <minimum value> <unit>
3 max: <maximum value> <unit>

Note that the read value for these types is only differentiated by the units. Any prefix of
the proper units is accepted, e.g. 4.2 V as well as 0.0042 kV is acceptable for voltages.

To read values with logical signal type we ensure that the value we monitor is equal to
the value specified in the instruction. The instruction is only valid if the width of the
endpoint matches the specified width. The read is successful if the monitored value is
equal to the specified value.

1 read:
2 value: <hex value>
3 width: <number of bits in value>

A special read value is the duration. With this we model a wait instruction as a read of a
clock. An instruction with a duration read value may only read a timer endpoint. In fact,
all instructions for a timer endpoint without a duration read value are invalid. The read
is successful if the specified amount of time has passed since invoking the instruction.

1 read:
2 duration: <duration> <time unit>

The endpoints var and device-instance cannot be read from. Technically, this is possible
with some PMBus commands, but this capability is currently not used by declarative
power sequencing.

Write Instructions Write instructions modify the platform state. Unlike read instruc-
tions, the end of a write instructions is not known unless its effect is observed, which is
what read instructions are for.

We set values of type DC, frequency or logical with the corresponding write instructions
described below. These write instructions are valid with endpoints of type wire, pin, and
var. The logical write value may not contain more bits than the width of the endpoint.

1 - write:
2 dc: <voltage> <voltage unit>
3 - write:
4 freq: <frequency> <frequency unit>
5 - write:
6 logical: <hex value>
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In order to set canonical device configurations which are also relevant for the sequence
generation we need a special instruction. It is only valid with device-instance endpoint.

1 write: configuration

The warning-level write value sets alert levels on pins. Currently, it is only valid with
endpoints of type pin where the pin has type DC. After this value has been written, the
device will produce an alert if the value of the pin wanders outside of the interval [min,
max]. We have voltage warning-levels because clock regulators usually use a phase lock
indicator (frequency analogue to a power-good pin) instead of warning-levels. Other
power related warning-levels like current are not used because currently voltages are the
only quantity the model imposes constraints on [3].

1 write:
2 warning-level:
3 min: <voltage> <voltage unit>
4 max: <voltage> <voltage unit>

Which instructions can be executed on which endpoints? In order to summarize
the text above, table 6.1 shows which instructions are allowed to be paired with which
endpoints in an instruction.

instruction \ endpoint wire pin var device-instance timer

write dc t t tb x x
write freq t t tb x x
write logical t t tb x x
write configuration x x x b x
write warning level x tb x x x

read dc t t nb x x
read dc t t nb x x
read dc t t nb x x
read duration x x x x ✓

Table 6.1: Under which conditions may an instruction be executed on an endpoint.
x: not allowed, ✓: always allowed, t: allowed if signal types match, b: allowed
with bus connection, n: possible but not used

6.1.2 Execution

Now that we know what instructions look like we concern ourselves with the question of
when a given instruction may be executed by some controller. Note a power sequence as
defined above is agnostic about which controllers may execute an instruction.
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The definition of power sequences (definition 6.2) already alludes to the fact that instruc-
tions need to have an order. In the following definition we use the facts that some step n
is executed after another step m if m < n and that writes are executed after reads as
defined in definition 6.3.

Definition 6.4 (Instruction Order). For two distinct instructions i1, i2 we define that i1
is executed before i2, i.e.

i1 ≺ i2 :⇐⇒
i1. step < i2. step∨i1. step = i2. step∧i1 ∈ writes(i1. step) ∧ i2 ∈ reads(i2. step).

Note that instructions in the same substep are not comparable in this relation. Instructions
which are not comparable may be executed at the same time.

This order is a proxy for sequencing constraints on the platform, as the order is defined
by the sequence generation which itself depends on the sequencing constraints to produce
a valid sequence. Therefore, we do not need any specific information on sequencing
constraints in order to operate on a generated power sequencing – all the required
information is already encoded.

The question we need to ask now is how can we ensure that we obey this ordering on
instructions when executing a sequence. Intuitively, we need to ensure not to start
executing some instruction before all preceding instructions are done executing. So the
question becomes: How can we tell that some instruction is done executing?

The easiest way to determine that an instruction is done with its execution, is to observe
its effect. For read instructions this is trivial, as their effect is observing platform state.
Therefore, a controller has observed the effect of the read instruction when it has received
the information obtained from the read instruction. For write instructions this is more
involved. The effect of some write instruction w is that the endpoint w.endpoint takes
on the value of w.write. Actually, for some endpoints like wires many more endpoints on
the platform take on this value. The effect of a write instruction is either not observed
(e.g. configuration) or it is observed by a read instruction. But since read instructions are
blocking until they have successfully read the expected value, we may start the execution
of reads(n) immediately the execution of all instructions in writes(n) in some step n has
started. If a step does not contain any reads, that is, all writes were just configuration
instructions, we just continue with executing the next step after the execution of all write
commands has started. While this might seem reckless, remember that the sequence
generation did not impose any further constraints on this ordering of the sequence.

It follows that some step may only start execution once it has observed the effects of
all reads in the previous step (common case) or if all writes in the previous step have
started their execution (rare case).
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Instructions need to be executed by some controller on the platform. But not all
controllers are able to execute all instructions. In our description of the platform model
we paid special attention that we are able to deduce which controller is able to control or
read the value of some endpoint on the platform.

Definition 6.5 (Possible Executors). For some instruction i we define the set

possible(i)

to contain all controllers which are able to control or observe the platform in order to
achieve the effect of i.

With that we know when and where a given instruction may be executed.

6.2 Partitioning Power Sequences

The goal of this work is to execute a power sequence while leveraging multiple controllers
at the same time. In order to achieve this we partition the sequence among the available
controllers. That is we assign instructions to controllers for execution.

As per usual when executing things in parallel, problems are bound to pop up. Before
we come up with an algorithm to partition power sequences, we first must understand
how the execution of a power sequence is affected by multiple executors. We then take
these findings into account when devising the sequence partitioning algorithm.

When looking at the Enzian platform, we realize that the power tree for the CPU and
FPGA sides are almost but not quite independent. When looking at sequences generated
from [3] we see the CPLDs rarely have long streaks of instructions independent of the rest
of the platform. Our conclusion from this observation is that an execution model where
the CPLDs control independent “subplatforms” does not suffice. Therefore, we use a
cooperative execution model where all controllers work in lock step on the same sequence
with instructions executed by different controllers. For this cooperative execution model
we enforce the following rules:

• Every controller is executing instructions from the same substep in a sequence.

• Every controller that executes a write instruction in a step must observe all effects
from the previous step.

• If a controller cannot observe all effects from the previous step another controller
that can may communicate to it that all effects of the previous step have been
observed.

• Reads may be executed as soon as the preceding step on the controller has been
completed.
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Note that the last rule states that reads multiple steps ahead may already be executed
when the current step has completed. This is possible because reads are blocking execution
on the controller until they are able to observe the expected value.

Our rules rely heavily on the observation of effects from the previous step. The following
definition specifies which controllers are able to observe reads in the previous step.

Definition 6.6 (Complete Observers). We call some controller c a complete observer
(also: complete controller) in step n ∈ N1 iff c is able to observe all reads in step n, i.e.

c ∈ complete(n) :⇐⇒ ∀i ∈ reads(n). c ∈ possible(i).

Observing writes in the previous step is only possible for the executing controller.
Therefore, if there are no reads in a step, all controllers executing writes must communicate
to all possible controllers that they are done executing the writes assigned to them.

Based on the rules above our controller choice for write instructions is rather unconstrained
as any possible controller on a well-designed platform is able to observe the effects of
the previous step or if it is not able to observe the previous step it is able to receive a
communication from another controller. This gives us tremendous freedom when choosing
executing controllers for write instructions and allows us to apply strategies to make this
choice.

Such strategies are merely preferences for controllers with certain characteristics. Applying
a strategy must not make the partitioning of a sequence impossible. In this work we
will implement three different strategies. The centralize strategy prefers the central
controller (in case of Enzian the BMC) whenever it is available. The distribute strategy
prefers non-central controllers (in case of Enzian the CPLDs) whenever possible. The
distribute without communication strategy prefers non-central controllers that do not need
additional communication. This means that for writes we prefer complete controllers. All
strategies prefer controllers that do not need additional communication as a secondary
preference.

This freedom in assigning write instructions to controllers then becomes a constraint when
thinking about assigning read instructions. So much so that our partitioning algorithm
will assign reads in a separate pass. In this pass we assign all read instructions of a step
at once, since our rules require all controllers executing reads to be complete observers.
When assigning the reads, we make sure to only assign reads to controllers where the
information produced by reads is actually used, i.e. the controller is a writer in the next
step or communicated the information to another controller.

As mentioned above, if a controller that is not a complete observer in the previous
step is a writer in the current step then this “incomplete” controller needs to receive a
communication from a complete controller when it has observed all effects of the previous
step.
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To summarize we outline our partitioning algorithm here:

1. Assign each write instruction in the sequence to one controller according to the
chosen strategy.

2. In a second pass, assign all read instructions of a step to all controllers where the
information produced is needed.

3. Insert communications in steps where they are needed based on the choices in the
previous two passes.

The following subsections describe each step in this algorithm in detail.

For convenience, we denote the set of controllers executing write instructions in step n
with writers(n) and denote the set of controllers executing read instruction the same step
with readers(n) respectively.

6.2.1 Write Assignment

When assigning write instructions to a controller, we iterate over all write instructions.
Consider some write instruction i in step n.

Any controller that may execute i must be able to execute i and it must be able to
either observe all reads in the preceding step or it must be able to communicate with a
complete controller of the previous step. Mathematically, a controller c is a candidate for
executing i if

c ∈ possible(i) ∧ (c ∈ complete(n− 1) ∨ ∃c′ ∈ complete(n− 1). comm(c′, c)).

From this set of candidate controllers we can then choose one controller to execute i
according to the chosen strategy.

6.2.2 Read Assignment

When assigning reads we iterate over all steps in a sequence. Consider some step n. We
assign all instructions in reads(n) to as many controllers as are needed to supply the
controllers in the next step to continue the execution of the sequence.

First, we find a set of candidate controllers for the read instructions. A candidate
must be a complete observer in step n and in the next step it must either use the
information obtained by the reads itself (i.e. it is a writer in the next step) or it passes
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on the information to some other controller that needs the information in the next step.
Mathematically, a controller c is a candidate for executing all writes in step n if

c ∈ complete(n) ∧ (c ∈ writers(n+ 1) ∨ ∃c′ ∈ writers(n+ 1). comm(c, c′)).

In order to find all necessary controllers we instantiate the set information-needed with
all writers of the next step, i.e. writers(n+ 1). Then we iteratively perform the following
procedure until either information-needed or the set of candidates is empty.

In the iteration we choose one controller c according to the chosen strategy form the set

{c | c ∈ candidates∧(c ∈ information-needed∨∃c′ ∈ information-needed . comm(c, c′))}.

Then we remove the chosen controller c from the set of candidates and information-needed.
Further, we remove all controllers c′ from information-needed where comm(c, c′) holds.

After the iteration the set information-needed must be empty. Otherwise, it might not
be possible to partition the given sequence. Then we assign all instructions in reads(n)
to all the chosen controllers.

6.2.3 Communication Insertion

The insertion of communication can be performed in the same pass as read assignment
and right after the assignment for a given step is done.

Intuitively, we need to insert a communication for every time we have removed a controller
from information-needed in the iteration for determining read controllers based on the
fact that the chosen controller can communicate with it. However, we also need to insert
communications to all writers in the next step if the current step did not contain any
read.

Concretely, we need to insert a communication from a controller c to another controller c′

in step n if they are able to communicate, c′ is a writer in the next step and either there
were no read instructions in this step and c was a writer, or otherwise c was a reader in
this step and c′ was not. Mathematically, the communication between c and c′ in step n
is inserted if

comm(c, c′) ∧ c′ ∈ writers(n+ 1) ∧
(

reads(n) = ∅ ∧ c ∈ writers(n)

∨ reads(n) ̸= ∅ ∧ c ∈ readers(n) ∧ c′ /∈ readers(n)
)
.

While this step is called “communication insertion” we do not actually insert instructions
for communication between controllers into the sequence. The actual implementation
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of the communication depends heavily on the different devices of the controllers and is
delegated to the device driver level. We only note for each step which controllers send a
communication to which other controllers.

While the low-level implementation of communications is delegated to a lower level the
high-level implementation is always the same. If controller c sends a communication to c′

in step n then c will perform a write in step n+ 1 to send the information and c′ will
perform a read in step n to receive the information. With this mechanism we ensure
that receiving controllers do not continue to the next step before they have received the
communication.
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7 Implementation

In this chapter we describe how we implemented the ideas of this work into a working
program which partitions a sequence and outputs code for the BMC and the CPLD.

Our program is a CLI written in the Rust programming language. In a first step we
modelled the device and sequence model as Rust data-structures and parsed them from
YAML files. With these models as a basis we implemented the partitioning algorithm.
The implementation of which neatly derives from the formulas presented in the previous
chapter by transforming these to set operations. After this followed the implementation
of the code generation for specific controllers, which is much more interesting.

The first step in code generation for any controller instance is to transform the frontend
instructions assigned to the particular controller and transform it into a sequence of
concrete instructions with information on how and where the instructions are executed
(see listing 7.1). For certain instructions there is more than one possibility for how that
instruction might be executed by the chosen controller. Our implementation generally
made the choice resulting in less bus operations. Further, the communications must be
converted to concrete instructions.

7.1 Communication between BMC and CPLD

In order to facilitate communication between two controllers, the sending party needs to
be able to send information to the receiving party. The CPLDs on Enzian have three
unconnected logical input pins IN[4..6], which can be configured to receive information
from the I2C register (see figure 7.1 on the following page). With this we have three bits
of information the BMC can use to pass information to the CPLDs. Unfortunately, the
CPLDs have no possibility of communication to the BMC as they do not have any spare
output facilities. Technically, we could use the voltage or trim outputs, but we decided
against that because the communication from the CPLDs to the BMC is not strictly
necessary as the BMC can observe all inputs and outputs on the CPLDs via bus and
therefore our assumption on one-sided communication holds.

With these three bits at our disposal we devise a small communication protocol. We
use the pin IN4 as a kind of clock where a clock edge signifies a communication. When
starting the sequence the BMC will set the pin to 1. Whenever the CPLD expects to
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1 enum ConcreteInstruction<'a> {
2 ReadPin {
3 step: usize,
4 pin: PinName<'a>,
5 value: ReadValue,
6 },
7 ReadBus {
8 step: usize,
9 bus: PinName<'a>,

10 value: ReadValue,
11 from_instance: InstanceName<'a>,
12 },
13 WritePin {
14 step: usize,
15 pin: PinName<'a>,
16 value: WriteValue,
17 },
18 WriteBus {
19 step: usize,
20 bus: PinName<'a>,
21 value: WriteValue,
22 to_instance: InstanceName<'a>,
23 },
24 Wait {
25 step: usize,
26 duration: Time,
27 },
28 }

Listing 7.1: Rust representation of a concrete instruction.

Figure 7.1: Unconnected input pins IN[4..6] of the CPLDs on Enzian [6] used for receiving
communication from the BMC.
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receive a communication that the effects of some step have been observed, it waits for
the inverse of the value previously set by the BMC. So in the initialization the CPLD
waits for IN4, which is referred to by its alias STEP_CLK in the generated code, to have the
value 1. In the first communication it receives it then waits for NOT STEP_CLK (i.e. 0, the
inverse of the previously set value 1). In the second expected communication it waits
for STEP_CLK and so forth. Therefore, a communication in some step n becomes a write
instruction in step n+ 1 of the correct “clock” value for the BMC and a read instruction
for the same value on pin STEP_CLK in step n for the CPLD.

We use the remaining pair of bits IN[5..6] to encode four different pieces of information.
Recall that the ispPAC can have multiple state machines (2.3.3) and that a platform
can have multiple sequences like a powerup and a powerdown sequence. Thus, we use the
bitstring 0b01 signify the powerup sequence and 0b10 the powerdown sequence. Each
sequence would have its own state machine and we would only execute the state machine
that received its corresponding code during initialization. The remaining two bitstrings
could be used for potential error conditions or other sequences.

7.2 Code Generation for CPLDs

The first problem when generating code for the ispPAC CPLDs is that the design
software PAC-Designer does not take any file input except its proprietary XML-based
.PAC format. Since this work is supposed to be about computer systems and not the
automation of GUIs, we opted to simply mimics the format of an export which includes
almost all information needed to fully program the CPLD and supplement information
that is not in the original export format with the goal that the output can be taken as
instructions to program the device in PAC-Designer.

When programming the CPLD we not only need to describe the program we also need to
fully configure all pins of the device. The voltage monitoring pins have to be configured
with the appropriate warning levels if these are declared to be compiled in the platform
model. We need to take special care of the pin VMON1 which has a voltage divider in order
for it to be able to monitor voltages higher than the maximum voltage rating of the pin.
Therefore, we need to scale down the warning-levels for this pin according to the voltage
divider in the schematics [6].

The logical input pins can either take their input from the connected wire or from an
I2C-register. We configure IN[1..3] to take their input from the respective wire and pins
IN[4-6] to take their input from the I2C-register. The logical output pins can either
be controlled by the CPLD or an I2C-register. By default, we configure the pins to be
controlled by an I2C-register. For all pins that are used in the concrete sequence executed
by the CPLD we change this configuration such that they are controlled from the CPLD.
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Since the ispPAC only has four timers and thus four possible times for wait instructions,
we need to make sure that wait instructions executed on one ispPAC do not collectively
need more than four distinct times. If there are more than four distinct times needed
we look for the two closest times and remove the smaller of the two. Here we use an
assumption that wait instructions in power sequences seek to achieve that the execution is
paused for at least a set amount of time (e.g. wait until the output voltage of a regulator
has stabilized) and that we therefore can increase the wait time and still have a correct
power sequence. We repeat this “contraction” of wait times until we are left with four
distinct times.

Generating LogiBuilder code for the CPLDs using concrete instructions is fairly straight
forward. First, we use a different state machine for each sequence we want to execute.
We initialize each execution in a state machine by waiting for the pins AGOOD and IN4 to be
high and the pins IN[5..6] to be equal to the bitstring of the sequence we want to execute.
Each read instruction is emitted as a Wait For <boolean expression>, write instructions
as an assignment instruction <pin> = <value>, and wait instruction produces a wait-for-
timer instruction Wait for <duration> using Timer<[1-4]> to pause the execution for a
set amount of time. The duration in this instruction is predetermined by the duration
that is programmed into the timer in the pin configuration.

With all these transformations, we are able to generate programs for the ispPAC CPLD.
An example sequence generated by our implementation can be found in listing 7.2.
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1 ============================================
2 CPLD logiBuilder
3 --------------------------------------------
4 State Machine 0
5 PscProgram
6

7 ProgramSize = 20
8

9 Step 0 Begin Startup Sequence
10 Step 1 Wait for AGOOD AND (STEP_CLK AND NOT IN5 AND IN6)
11 Step 2 Wait for NOT STEP_CLK
12 Step 3 EN_UTIL_3V3 = 1
13 Step 4 Wait for STEP_CLK
14 Step 5 EN_VCCINT_FPGA = 1
15 Step 6 Wait for NOT STEP_CLK
16 Step 7 EN_VCCINTIO_BRAM_FPGA = 1
17 Step 8 Wait for STEP_CLK
18 Step 9 EN_VCC1V8_FPGA = 1
19 Step 10 Wait for 3 ms using TIMER1
20 Step 11 Wait for VCC1V8_OK
21 Step 12 EN_SYS_2V5_24 = 1, EN_SYS_2V5_13 = 1, EN_SYS_1V8 = 1, EN_VADJ_1V8_FPGA

= 1, EN_VDD_DDRFPGA24 = 1, EN_VCCINTIO_BRAM_FPGA = 1↪→

22 Step 13 Wait for NOT STEP_CLK
23 Step 14 EN_MGTAVCC_FPGA = 1
24 Step 15 Wait for MGTAVCC_FPGA_OK
25 Step 16 EN_MGTAVTT_FPGA = 1
26 Step 17 Wait for STEP_CLK
27 Step 18 EN_MGTVCCAUX_L = 1, EN_MGTVCCAUX_R = 1
28 Step 19 Halt
29 --end-of-PscProgram

Listing 7.2: Generated program for the pac-fpga CPLD on Enzian. Partitioning was
performed using the strategy distribute. The highlighted steps contain
the program generated with the partitioning strategy distribute without
communication.
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8 Evaluation

In this chapter we evaluate the implementation by demonstrating its abilities to partition
power sequences for Enzian by examining the partitions generated by the different
strategies.

8.1 Setup

For this section we use the sequence generated by the code for [3]1. This sequence and
the corresponding sequence model is then translated into the YAML-format we described
in this work. Some adjustments in the modelling had to be made in the modelling of the
platform.

• Busses are now explicitly modeled as wires connecting to bus pins.

• All bus related pin functions like monitors, alerts and remotes were adjusted
remodeled to conform to the new model.

• The monitoring device INA226 is now modelled as a consumer instead of a
controller.

• The PSU was remodeled to reflect the fact that it is one device with multiple output
cables.

• The clock regulator SI5395 was modeled closer to the datasheet, especially for the
monitoring of the phase lock.

• The voltage regulator ISL6334 was remodeled as explained in section 5.1.5.

The translated model and sequence were then both fed into our sequence partitioning
implementation described in the previous chapter. We partition the sequence with all
three implemented strategies centralize, distribute, and distribute without communication
(explained in section 6.2).

1Command: $ ./find-seq.scm -d enzian-desc -p enzian power-on-both
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8.2 Partitioned Sequences

In this section we analyze the partitioned sequences generated for each strategy. The
table 8.1 shows the number of instructions each controller executes when the sequence is
partitioned using a given strategy. Note that for 12 instructions on the two CPLDs it is
debatable whether they constitute “real” instructions. These are actually the instructions
that configure the warning levels for the 12 voltage monitoring pins on the ispPAC. These
are assigned to the CPLDs in every strategy because we modelled all voltage monitoring
pins with alert: compiled. In order to be thorough and transparent we indicate the
number of instructions that entail an actual execution in parentheses.

Strategy: Centralize Distribute Distribute w/o communication

bmc 88 66 79
pac-cpu 12 (0) 21 (9) 15 (3)

pac-fpga 12 (0) 29 (17) 22 (10)
Communications 0 8 0

Table 8.1: Number of instructions executed on each controller for a sequence partitioned
by a given strategy.

For the partition generated using the centralize strategy we find that all instructions are
assigned to the central controller, which in case of Enzian is the BMC. This corresponds
directly with the current implementation where the BMC remote controls all pins of the
CPLDs via bus commands in order to be able to execute all instructions.

The partition which was computed using the strategy distribute turned out as advertised.
As table 8.1 shows a significant amount of instructions that were able to be offloaded to the
CPLDs. The generated code for the controller pac-fpga can be found in listing 7.2. The
partition generated using the strategy distribute without communication was still able to
offload some instructions, but much less. Actually, the distributed partitions without
communication are always contained in the distributed partitions with communication.
In listing 7.2 the highlighted steps 10, 11, 12, 15, and 16 contain the 10 instructions
which are assigned to pac-fpga according to table 8.1.

Notice, that the instructions on the CPLDs when partitioned with the strategy distribute
without communication are always independent subsequences, which can be observed and
executed entirely be the CPLDs. Thus, these independent subsequences can be found in
the partitions generated with the distribute strategy because they always start with the
first read instruction of one of the voltage monitoring pins after a communication and
end with the last write instruction before the following communication. Ideally, these
independent subsequences would be as long as possible to utilize the CPLDs as much as
possible independently of the BMC.
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The difference between the number of instructions the partitioning algorithm is able to
offload with the distributed and the distributed without communication strategy is a
measure for how tightly coupled a platform is, i.e. how separate are the CPU and FPGA
branches in the Enzian power tree, and how compact the sequence generation generated
the power sequence. More tightly coupled platforms result in shorter distributable
independent subsequences as these subsequences will be more likely to be broken up
by constraints imposed by the coupling. Compact sequences reduce the number of
distributable independent subsequences because they “parallelize” the available work
and thus insert instructions which cannot be observed by some controller in a given step
and communications become necessary. This is exactly what happens in our case with
the sequence generated from the code of [3] as minimization of sequence length was one
of the goals of that work (see section 3.1).
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9 Conclusion

In this chapter we discuss our work and possible future work and summarize what we
have done.

9.1 Discussion

Over the course of this work we encountered some caveats and other bits of interest that
we will discuss in this section.

9.1.1 Is waiting really a Read?

In this work we modelled wait instructions as read instructions with the reasoning that
waiting is just monitoring a timer until the specified time was reached which fits nicely
into our model of read instructions. However, when generating instructions for controllers
this abstraction quickly fell apart. Our implementation of concrete instructions (see
listing 7.1) we added a wait instruction again. This has multiple reasons. While we can
model wait instructions as reads they are different from reads in their nature and usually
compile to a special wait function on a controller. Further, waits could occur at any point
in a step. In fact, we had to assume that waits only should occur as a delay between the
write substep and the read substep.

This assumption was made explicit in [4] where wait instructions could be specified as a
delay in the read instruction which is quite elegant as it does not suffer from the same
ambiguities our approach suffers from. Another more flexible possibility would be to drop
the two-instruction-abstraction altogether and introduce wait instructions that specify at
what time they are executed.

9.1.2 Bidirectional Communication Problems

Our method for generating instructions from communications has a critical flaw if two
controllers are able to communicate in both directions, which is not the case on Enzian.
To illustrate consider two controllers c1 and c2 with comm(c1, c2) and comm(c2, c1) and
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suppose that in step n both controllers need to send a communication to the other. As
described in section 6.2.3 this would result in both controllers waiting in step n to receive
a message from the other which it would send as a write in step n + 1. We have a
deadlock!

In order to resolve this problem we need to make sure c1 and c2 will not wait on their
respective communications at the same time. We could achieve this by requiring that for
every pair of controllers on the platform which are able to communicate bidirectionally
their communications are executed sequentially. Applying this to our example we could
define that the controller with the lower index may send its communication first. With
this we insert a virtual step before the original step n+ 1 into our sequence which only
consists of c1 sending the communication and c1 reading the communications from c2,
which it sends in step n+ 1. We call this a virtual step because we do not require other
controllers to observe its events as it is perfectly fine for them to continue with execution
of step n+ 1.

The illustrated problem could come up in case a step does not contain any read instructions
and the writers of this step all broadcast communications when they are done executing.
If two of these controllers have bidirectional communication then we have a deadlock.
Our sketched solution might be able to solve the problem, but it might also help if we
start verifying changes to device configuration using read instructions. Which this all
steps without any reads would be eliminated in the sequences generated for Enzian. Note,
that there are other situations where the described deadlock could arise.

9.1.3 Partitioning multiple Sequences

In order for platform controllers to be useful for the purpose of power sequencing, they
must be able to execute multiple sequences at different times. For instance, controllers
must not only be able to power up the platform, but they also must be able to shut it
down gracefully again. The sequence generation already supports specifying different
sequences that may be generated. Concretely, we are able to generate a power up and a
power down sequence from [3].

However, having multiple sequences at the same time, brings us into trouble when
partitioning power sequences for the ispPAC. Not only do we need to know all the
sequences at compile time, but we also need to make the same decisions when partitioning
all the sequences.

The output pins of the ispPAC can be configured at compile time to either be controlled
by the CPLD or by an I2C register, such that the BMC can control it remotely. This
configuration cannot be changed at runtime. Thus, we can run into the problem that we
partition a power up sequence and make certain decisions on which pins are controlled
by the CPLD and that we partition a power down sequence afterwards and settle on
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a completely different set of pins that should be controlled by the CPLD. Therefore,
we would need to ensure that the partitioning algorithm makes the same decision on
which controllers control which parts of the platform for every sequence that needs to be
programmed for that platform.

However, this constraint only applies to devices where we need to configure from where
pins are controlled beforehand. We would have to take care that we do not introduce
unnecessary constraints in our partitioning procedure.

9.1.4 Does it pay off to use CPLDs in Power Sequencing?

After doing all this work to enable CPLDs to play an active and autonomous part
in controlling the platform while executing power sequences we have to ask whether
incorporating CPLDs in an active role actually makes sense. In order to make a judgement
to that end we weigh potential benefits with potential drawbacks.

A major advantage of CPLDs is their simplicity. At their core, they are a bunch of logic
gates arranged in a useful and reconfigurable way. The fact that CPLDs are programmed
by implementing logical formulas in disjunctive normal form leads to hard real-time
guarantees on the execution time as the delay logic delay as well as the delay from all
the connective wiring is entirely determined by the programming. Thus, even though
some timings are not known a priori we are able to estimate a hard upper bound for the
runtime.

Further, this simplicity also makes the implementation of a power sequence much easier
to understand as it translates directly to logic formulas instead of being build on top of an
entire complex software stack like openBMC. The programs are also easy to understand
as they either wait for some logical condition to be satisfied and then execute some
assignments once they are.

A big downside to CPLDs (at least the ispPAC) is the hassle it takes to reconfigure. In
order to flash a new program onto the device we need to access the mainboard, connect
the JTAG connector and make sure we followed the manual for the device to a tee. To
add insult to injury the process of programming the CPLD is itself really painful as the
PAC-Designer program does not take any file or other textual input. So we are left with
clicking our generated programs into the PAC-Designer GUI.

But once the CPLD is reconfigured, the parts of the sequence stored and executed on the
CPLD cannot be meddled with until we connect a JTAG connector again. This makes
the CPLD a secure “enclave” where parts of power sequences are safe from vulnerabilities
of the BMC.
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In order to take as much advantage as possible from this “enclave” we would want to
execute sequences independent of the BMC which are as long as possible. But as we saw
in the previous chapter, highly coupled platforms and compact sequence generation will
diminish returns on this front.

A major consideration for computer systems generally is their complexity. By including
CPLDs in the execution of power sequences we undoubtably increase the complexity of
the platform and the declarative power sequencing pipeline. This work is proof of this
fact as it would not have been necessary, if CPLDs were not to add any complexity.

In summary, we think that the CPLDs are not particularly useful when developing power
sequences where we would potentially need to reconfigure them repeatedly and may
benefits can not really be seen. However, in a long-running production system where
almost no reconfiguration are required, we think that CPLDs make the platform more
solid and more understandable.

9.1.5 Do Declarative Power Sequencing Techniques generalize to Hardware?

In the introduction we stated that we would want to challenge the established abstractions
and techniques in declarative power sequencing to new applications in hardware and thus
check how robust these abstractions are. Also, we want to answer this question because
it was a claim in [2].

We do think that these techniques are not only limited to the realm of software and
instead generalize for hardware. First of all, consider the interface a controller needs to
have by necessity. That is some digital input and digital output (we do not need any
voltage sensing if we use regulators with power-good pins). This interface is common to
all logical ICs. Second of all, remember that the CPLD boils down to a reconfigurable
grid of logic gates. So instead of programming the CPLD with the partitioned sequence
we might as well output some Verilog code that achieves the same purpose and etch a
PCB based on that HDL-description.

9.2 Future Work

Based on our gained understanding of the problem at hand we have some suggestions for
some future work.

Enable partitioning multiple sequences at the same time. In order to make partitioned
sequences useful to real platforms we need to solve the problem of making sure that
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the partitioning of multiple sequences makes the choices which devices and pins control
which part of the platform consistently for all the partitioned sequences.

Model and implement fault handling. The current platform model does not fully model
how faults can occur and how they can be handled. Merely the alert levels are modelled
at this time and in this work they are mostly used to configure the voltage triggers for
the monitoring pins on the CPLD. Ideally, we would be able to generate code that is
able to recover the platform gracefully from faults that have occurred. Since the ispPAC
has the capabilities for exceptions it would be extra nice, if we were able to use them.
Although, we would have to solve the same problem as above.

Allow non-complete readers. In this work we required that all controllers executing
read instructions are complete observers in that step. While this requirement simplified
this work, it is not really necessary. Consider two read instructions in a step that are
executed by two different controllers. While no controller is complete, if both sent the
other respective other controller a communication that it has observed its read instruction
then both would have observed all reads on the platform. To achieve this we would need
much more sophisticated ways of computing which communications are necessary.

Push partitioning frontend. Many problems we need to solve when partitioning the
sequence could also be tackled with constraint solving by pushing more work into the
frontend. This way we would also be able to optimize the generated sequence to be as
“distributable” as possible. Also, some of the more complicated proposed extensions to
the partitioning algorithm might be more easily implemented by doing constraint solving.

Automate LogiBuilder. As a perk to reduce the turnaround time when changing the
power sequence, it would be useful to automate the PAC-Designer GUI, so we do not
have to click our program into there. An alternative approach to the automation of the
GUI would be to reverse engineer the proprietary XML-based file format.

9.3 Summary

We have seen how we can partition a power sequence to execute on multiple controllers
cooperatively. To achieve this we first showed what assumptions need to be weakened
and which problems we might encounter as a result of that. In order to mitigate these
problems we foresaw we presented our adjusted platform model which modelled all bus
related components and actions explicitly as a key difference to prior work. Based on
that model we presented a sequence model and devised an algorithm to partition such
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sequences between multiple controllers. We implemented these models and algorithms
and demonstrated that we are able to partition sequences using three different strategies.
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A Gamserrugg Platform Model

Here we have the platform model for our example platform “Gamserrugg”. A schematic
representation can be found in figure 5.1 on page 32.

1 # TODO: Update with correct model from code
2 devices:
3 - name: MAX15301
4 kind: producer
5 inputs:
6 - pin: PWR
7 kind: dc
8 monitor: [voltage]
9 - pin: EN

10 kind: logical
11 width: 1
12 outputs:
13 - pin: V_OUT
14 kind: dc
15 monitor: [voltage]
16 - pin: PGOOD
17 kind: logical
18 width: 1
19 busses:
20 - pin: SDA
21 protocols: [PMBus, SMBus, I2C]
22 internals:
23 - name: VID
24 kind: dc
25 default: default
26

27 - name: MAX8869
28 kind: producer
29 inputs:
30 - pin: V_IN
31 kind: dc
32 - pin: SHDN
33 kind: logical
34 width: 1
35 outputs:
36 - pin: V_OUT
37 kind: dc
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38

39 - name: MAX15053
40 kind: producer
41 inputs:
42 - pin: V_IN
43 kind: dc
44 - pin: V_EN
45 kind: logical
46 width: 1
47 outputs:
48 - pin: V_OUT
49 kind: dc
50

51 - name: SI5395
52 kind: producer
53 inputs:
54 - pin: VDD
55 kind: dc
56 outputs:
57 - pin: CLK
58 kind: freq
59 monitor: [frequency]
60 busses:
61 - pin: SDA
62 protocols: [I2C]
63

64 - name: PSU
65 kind: producer
66 inputs:
67 - pin: EN
68 kind: logical
69 width: 1
70 outputs:
71 - pin: V_OUT
72 kind: dc
73

74 - name: CPU
75 kind: consumer
76 inputs:
77 - pin: VDD
78 kind: dc
79 - pin: VTT
80 kind: dc
81 - pin: CLK
82 kind: freq
83

84 - name: FPGA
85 kind: consumer
86 inputs:
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87 - pin: VDD
88 kind: dc
89 - pin: VTT
90 kind: dc
91 - pin: VINT
92 kind: dc
93 - pin: CLK
94 kind: freq
95

96 - name: ISPPAC
97 kind: controller
98 inputs:
99 - pin: VCC

100 kind: dc
101 - pin: IN1
102 kind: logical
103 width: 1
104 monitor: [logical]
105 remote: true
106 - pin: IN2
107 kind: logical
108 width: 1
109 monitor: [logical]
110 remote: true
111 - pin: IN3
112 kind: logical
113 width: 1
114 monitor: [logical]
115 remote: true
116 - pin: IN4
117 kind: logical
118 width: 1
119 monitor: [logical]
120 remote: true
121 - pin: IN5
122 kind: logical
123 width: 1
124 monitor: [logical]
125 remote: true
126 - pin: VMON1
127 kind: dc
128 monitor: [voltage]
129 alert: compiled
130 - pin: VMON2
131 kind: dc
132 monitor: [voltage]
133 alert: compiled
134 - pin: VMON3
135 kind: dc
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136 monitor: [voltage]
137 alert: compiled
138 - pin: VMON4
139 kind: dc
140 monitor: [voltage]
141 alert: compiled
142 - pin: VMON5
143 kind: dc
144 monitor: [voltage]
145 alert: compiled
146 - pin: VMON6
147 kind: dc
148 monitor: [voltage]
149 alert: compiled
150 - pin: VMON7
151 kind: dc
152 monitor: [voltage]
153 alert: compiled
154 - pin: VMON8
155 kind: dc
156 monitor: [voltage]
157 alert: compiled
158 - pin: VMON9
159 kind: dc
160 monitor: [voltage]
161 alert: compiled
162 - pin: VMON10
163 kind: dc
164 monitor: [voltage]
165 alert: compiled
166 - pin: VMON11
167 kind: dc
168 monitor: [voltage]
169 alert: compiled
170 - pin: VMON12
171 kind: dc
172 monitor: [voltage]
173 alert: compiled
174 outputs:
175 - pin: OUT6
176 kind: logical
177 width: 1
178 monitor: [logical]
179 remote: true
180 - pin: OUT7
181 kind: logical
182 width: 1
183 monitor: [logical]
184 remote: true
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185 - pin: OUT8
186 kind: logical
187 width: 1
188 monitor: [logical]
189 remote: true
190 - pin: OUT9
191 kind: logical
192 width: 1
193 monitor: [logical]
194 remote: true
195 - pin: OUT10
196 kind: logical
197 width: 1
198 monitor: [logical]
199 remote: true
200 - pin: OUT11
201 kind: logical
202 width: 1
203 monitor: [logical]
204 remote: true
205 - pin: OUT12
206 kind: logical
207 width: 1
208 monitor: [logical]
209 remote: true
210 - pin: OUT13
211 kind: logical
212 width: 1
213 monitor: [logical]
214 remote: true
215 - pin: OUT14
216 kind: logical
217 width: 1
218 monitor: [logical]
219 remote: true
220 - pin: OUT15
221 kind: logical
222 width: 1
223 monitor: [logical]
224 remote: true
225 - pin: OUT16
226 kind: logical
227 width: 1
228 monitor: [logical]
229 remote: true
230 - pin: OUT17
231 kind: logical
232 width: 1
233 monitor: [logical]
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234 remote: true
235 - pin: OUT18
236 kind: logical
237 width: 1
238 monitor: [logical]
239 remote: true
240 - pin: OUT19
241 kind: logical
242 width: 1
243 monitor: [logical]
244 remote: true
245 - pin: OUT20
246 kind: logical
247 width: 1
248 monitor: [logical]
249 remote: true
250 busses:
251 - pin: SDA
252 protocols: [SMBus, I2C]
253

254 - name: BMC
255 kind: controller
256 outputs:
257 - pin: EN_PSUP
258 kind: logical
259 width: 1
260 busses:
261 - pin: BUS
262 protocols: [PMBus, SMBus, I2C]
263

264

265 platform:
266 name: example
267 instances:
268 - name: psu
269 device: PSU
270 - name: bmc
271 device: BMC
272 busses:
273 - pin: BUS
274 address: 0x11
275 - name: pac-cpu
276 device: ISPPAC
277 busses:
278 - pin: SDA
279 address: 0x60
280 - name: pac-fpga
281 device: ISPPAC
282 busses:
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283 - pin: SDA
284 address: 0x61
285 - name: cpu
286 device: CPU
287 - name: fpga
288 device: FPGA
289 - name: clk-main
290 device: SI5395
291 busses:
292 - pin: SDA
293 address: 0x6A
294 - name: max-vdd-cpu
295 device: MAX15053
296 - name: max-vdd-fpga
297 device: MAX15053
298 - name: max-vint-fpga
299 device: MAX15301
300 - name: max-vtt-cpu
301 device: MAX15301
302 - name: max-vtt-fpga
303 device: MAX8869
304

305 wires:
306 - name: en-psu
307 from:
308 instance: bmc
309 pin: EN_PSU
310 to:
311 - instance: psu
312 pin: EN
313 - name: psu-pwr
314 from:
315 instance: psu
316 pin: V_OUT
317 to:
318 - instance: pac-cpu
319 pin: PWR
320 - instance: pac-fpga
321 pin: PWR
322 - instance: max-vdd-cpu
323 pin: PWR
324 - instance: max-vtt-cpu
325 pin: PWR
326 - instance: max-vdd-fpga
327 pin: PWR
328 - instance: max-vint-fpga
329 pin: PWR
330

331 - name: en-vdd-cpu

68



332 from:
333 instance: pac-cpu
334 pin: OUT7
335 to:
336 - instance: max-vdd-cpu
337 pin: EN
338 - name: vdd-cpu
339 from:
340 instance: max-vdd-cpu
341 pin: V_OUT
342 to:
343 - instance: cpu
344 pin: VDD
345 - instance: pac-cpu
346 pin: MON2
347

348 - name: en-vtt-cpu
349 from:
350 instance: pac-cpu
351 pin: OUT6
352 to:
353 - instance: max-vtt-cpu
354 pin: EN
355 - name: vtt-cpu
356 from:
357 instance: max-vtt-cpu
358 pin: V_OUT
359 to:
360 - instance: cpu
361 pin: VTT
362 - instance: clk-main
363 pin: PWR
364 - instance: pac-cpu
365 pin: MON1
366

367 - name: en-vdd-fpga
368 from:
369 instance: pac-fpga
370 pin: OUT6
371 to:
372 - instance: max-vdd-fpga
373 pin: EN
374 - name: vdd-fpga
375 from:
376 instance: max-vdd-fpga
377 pin: V_OUT
378 to:
379 - instance: fpga
380 pin: VDD
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381 - instance: max-vtt-fpga
382 pin: PWR
383 - instance: pac-fpga
384 pin: MON2
385

386 - name: en-vtt-fpga
387 from:
388 instance: pac-fpga
389 pin: OUT7
390 to:
391 - instance: max-vtt-fpga
392 pin: EN
393 - name: vtt-fpga
394 from:
395 instance: max-vtt-fpga
396 pin: V_OUT
397 to:
398 - instance: fpga
399 pin: VTT
400

401 - name: en-vint-fpga
402 from:
403 instance: pac-fpga
404 pin: OUT8
405 to:
406 - instance: max-vint-fpga
407 pin: EN
408 - name: vint-fpga
409 from:
410 instance: max-vint-fpga
411 pin: V_OUT
412 to:
413 - instance: fpga
414 pin: VINT
415 - instance: pac-fpga
416 pin: MON1
417

418 - name: en-clk
419 from:
420 instance: bmc
421 pin: EN_CLK
422 to:
423 - instance: clk-main
424 pin: EN
425 - name: clk
426 from:
427 instance: clk-main
428 pin: CLK
429 to:
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430 - instance: cpu
431 pin: CLK
432 - instance: fpga
433 pin: CLK
434

435 - name: bus
436 from:
437 instance: bmc
438 pin: BUS
439 to:
440 - instance: pac-cpu
441 pin: BUS
442 - instance: pac-fpga
443 pin: BUS
444 - instance: clk-main
445 pin: BUS
446 - instance: max-vtt-cpu
447 pin: BUS
448 - instance: max-vtt-fpga
449 pin: BUS
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