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Abstract

The correct management of a platform’s power and clock resources is vital for the correct
operation of the platform’s hardware, which in turn forms the cornerstone of any assur-
ances provided by software. In light of this, the firmware implementing such a power and
clock management solution should ideally provide strong correctness guarantees. How-
ever, to the extent of our knowledge, the current state of the art does not go beyond
manually-coded point solutions.

This thesis approaches the problem of power and clock management in a more princi-
pled fashion: It proposes a model that captures the behaviour of the platform in this
management context. Additionally, a set of mechanisms are presented that, if applied to
any model instance, generate management solutions for the platform described by that
instance. If the correctness of these mechanisms were formally verified, which was not
possible within the time constraints of this thesis, provably correct management solutions
could be generated for any platform whose behaviour can be expressed by the model.
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Chapter 1

Introduction

To some extent, every piece of software relies on the underlying hardware platform to
function correctly. Even formally verified software is no exception; as noted by Klein et
al in the discussion of their verification of seL4 ([15], p. 29):

The best validated formal theorem will not guarantee correct behaviour if
processor and memory are melting underneath.

There are several ways in which the correct functionality of hardware can be undermined.
For instance, by applying an inappropriate supply voltage or a too skewed clock signal
that violates the circuitry’s timing constraints. Consequently, the correct management of
the platform’s power and clock resources constitutes a vital precondition for any software
guarantees to hold.

This thesis attempts to make a step towards providing stronger guarantees for the cor-
rectness of this management. Before we concretise this goal, we discuss the current state
of the art of power and clock management.

1.1 State of the Art

On modern computing platforms, power and clock management is not a trivial matter.
A CPU might for instance require an array of different supply voltages that must come
online in specific sequences during the bootstrap process. Therefore, this management
along with other general platform maintenance functionality is handed off to a dedicated
microcontroller. Depending on vendor and platform, this microcontroller is known under
many names, for example Management Engine in the case of Intel. In this thesis, we will
use the more general term Baseboard Management Controller (BMC).

The general state of the firmware running on BMCs, as far as disclosed, is at odds with
the high level of privilege with which it executes [6]. This is also includes the parts
dedicated to power and clock management: To our knowledge, the current published
state of the art does not go beyond manually-coded point solutions and no attempts at
formal verification have been made.
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1.2 Goal of this thesis

In this thesis, we will approach the problem of power and clock management in a fashion
that separates policy from mechanism: We devise a model that captures correct and
relevant platform behaviour with respect to power and clock management. On top of
this model, we construct a set of mechanisms that generate the BMC actions necessary
to correctly manage the platform described by any model instance.

Our approach is promising from the point of view of formal verification: If we prove
the correctness of the mechanisms with respect to the intended model semantics, we can
generate verified management code for any platform our model can capture. Within
the time constraints of this thesis, we were not able to completely formalise our model
semantics and perform this correctness proof, yet we are convinced that it would be
possible.

We conclude this section by outlining the structure of our thesis and the purpose every
chapter serves with respect to our management approach:

In chapter 3, we attempt to describe power and clock management as well as the involved
components from a point of view that is as universal as possible. Since we have found
almost no suitable literature to rely on, we complete this description with observations
we have made in context of the Enzian research platform, which we will introduce in
chapter 2, along with other scientific work that relates to this thesis.

Based on these general descriptions, we identify a subset of power and clock management
our thesis will focus on in chapter 4. We then proceed to concretise the requirements our
model and mechanisms must fulfil.

Chapter 5 presents the platform model we have devised, motivated by our earlier general
description of power and clock management.

In chapter 6, we concretise the problems our mechanisms must solve and discuss their
computational complexity. We then present an algorithm capable of providing the desired
solution.

As a proof of concept, we have modelled the aforementioned Enzian platform. In chapter
7, we present some observations we have made in that process, as well as some general
modelling advice.

Chapter 8 is dedicated to the implementation of our mechanisms as well as the model
syntax.

We evaluate the performance of our mechanisms and perform a comparison to the man-
agement solution implemented for the Enzian platform in chapter 9.

Finally, we conclude our thesis and propose future work in chapter 10.
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Chapter 2

Related Work

This chapter discusses the scientific work relevant for this thesis. After an overview of
general related work, we will introduce two current projects of the Systems Group at
ETH that have shaped the idea for a policy-mechanism separated approach to power and
clock management.

2.1 General related work

We have structured this section into several subsections according to the discussed topic.

2.1.1 Power Management

The topic of optimally trading off performance and power consumption has been thor-
oughly studied. In scientific literature [3, 4], the process of deciding when a CPU or
similar computational agent should be transitioning to a more or less performant power
state is referred to as dynamic power management. This does not correspond to the
power management problem we address in this thesis; we are concerned with platform-
level power and clock management: The firmware running on the BMC must realise the
aforementioned transitions between power states but does not make the decision of when
to perform them.

2.1.2 BMC firmware

As mentioned in the introduction, the current state of the firmware running on BMCs
is not satisfactory. In recent years, the disclosure of multiple resulting security vulner-
abilities has drawn a lot of attention to this issue. As a consequence, first actions have
been taken to improve the situation, of which we provide a non-comprehensive, high-level
overview:

Up to a few years ago, BMC firmware was proprietary and not disclosed to the public.
Since then, projects such as OpenBMC and u-bmc have disclosed some implementations
to the public, with the aim of providing more transparency and in the hopes of collectively
finding and fixing bugs and vulnerabilities. [9]
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To ease data centre management, modern BMCs offer an array of remote management
capabilities. To be able to do so, the firmware must implement some minimal OS func-
tionality such as NIC drivers and network protocols. According to Narayanan et al, the
resulting inherent complexity of the firmware code routinely introduces bugs and vulner-
abilities. To address this issue, they propose the verified minimal OS RedLeaf in [17],
that is ”aimed at the needs of a diverse family of firmware subsystems”.

In 2018, the National Institute of Standards and Technology (NIST) of the United States
has released a set of guidelines to improve the protection as well as the detection and
subsequent recovery of platform firmware from malicious attacks. [19]

2.1.3 Related Problems

As mentioned in the introduction, we aim to devise a model that captures correct platform
behaviour. Quite generally, this can be achieved by placing appropriate constraints on
said behaviour. The mechanisms we construct to extract management actions from our
model therefore correspond to Constraint Satisfaction Problems (CSPs).

CSPs are a very broad class of problems. In the resulting wealth of scientific papers about
these problems, one could almost certainly find a CSP formulation for a different problem
that is very similar in character to the platform model we have devised. Thematically,
we have found the most similar CSP instances to be concerned with the so-called unit
commitment problem (see, for instance, [26]). Said is concerned with determining the
optimal start-up and shut-down times of generating units in connection with electrical
power production. However, these problem instances do not exhibit much structural
similarity to our platform model.

2.2 Enzian

Until recently, commercial off-the-shelf hardware (CTOS) was ubiquitously used, from
every-day to commercial usage. Nowadays, there is an increasing trend towards highly
specialised or even custom hardware for commercial applications. This is problematic
for academic systems software research: research on CTOS hardware does not generalise
to custom hardware whereas custom hardware - if even disclosed - features such a high
degree of specialisation that research is likely reduced to confirming that it works well for
the intended use case but badly for others.[25]

This is where Enzian comes into play, a research platform built from scratch by the Sys-
tems Group at ETH. Its most extraordinary feature is the tight coupling of a server-class
ThunderX CPU with a high-end FPGA. This coupling, combined with the configurabil-
ity of the FPGA offers a tremendous amount of flexibility and can therefore be used to
explore and simulate a lot of scenarios interesting to systems software research.

With its high-end CPU and FPGA, power and clock management on the Enzian platform
is inherently non-trivial, and it thus also features a BMC. With the Enzian being designed
from scratch, its complete platform layout and the functionality of every integrated circuit
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are revealed. This offers a unique opportunity to reason about and explore the power
and clock management actions the Enzian BMC must perform.

2.3 Sockeye

Sockeye is another on-going research project of ETH’s Systems Group. Originally, Sockeye
referred to the domain specific language developed by Daniel Schwyn in his master’s thesis
[22] to express the address decoding net model proposed by [2]. Meanwhile, Sockeye has
evolved to a full-fledged research project that seeks to formalise the interface between
software and hardware to ultimately generate provably correct code that handles the
delicate interaction with today’s complex hardware.

The combination of the idea behind Sockeye and the insights into BMC management
provided by the Enzian platform have given rise to the model-mechanism based approach
to power and clock management pursued in this thesis.
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Chapter 3

Power and Clock Management

In this chapter, we take a closer look at how power and clock management is conducted in
a modern computer system, setting the scene for the work and results of this thesis. Over
the course if this chapter, we flesh out several observations, assumptions and definitions
about power and clock management that we will refer to when motivating design choices
in our later work.

Literature on power and clock management from a general perspective is very scarce. As
already mentioned in the introduction, most of the following discussion is hence based on
observations made in connection with the Enzian platform.

This chapter is structured as follows: In the first section, we define clock and power
resources and develop a more concrete perspective on the concept of power and clock
management. In subsequent sections, we approach the topic from a functional point of
view. We identify and elaborate on the entities in a computer system that adopt the
following management roles (see figure 3.1 for a schematic overview):

� producers that supply specific resources (section 3.2)

� consumers that require specific resources (section 3.3)

� managers that are balancing the demands of the consumers and the supply of the
producers (section 3.4)

In order to simplify the reasoning about all entities involved in power and clock manage-
ment, we furthermore define the term platform, inspired by [10], and component in the
context of this thesis as follows:

Definition 1 (Platform). A platform is the composition of all producers, consumers and
managers present in a computer system.

Definition 2 (Component). A component is a single producer or a consumer.
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Figure 3.1: A schematic overview of the relation between producers, consumers and managers

The Component definition purposely excludes managers, since the platform model we are
going to develop over the course of the next three chapters adopts a manager’s perspective
on the platform.

3.1 Resources

In the context of this thesis, a resource is defined as follows:

Definition 3 (Resource). A resource is a clock signal, a logical signal or a power source.

Remark. From a technical point of view there is no difference between a conductor
supplying power and one that is transmitting a logical signal. In this thesis, we are going
to use the term logical signal in situations where only the interpretation of the power
signal as being high or low is of import.

Clock signals and power are transmitted over some conductor, in computer systems this
is most commonly a wire or a circuit trace.

Remark. In the context of this thesis, we refer to conductor strictly in a power and clock
management context. When referring to a conductor, we thus always mean a conductor
that is supplying a clock signal or power to the platform.

From an alternate perspective, we could consider a conductor to embody the correspond-
ing resource. Power and clock management hence translates to managing the state of
conductors.

Before we can define Power and Clock Management for our purposes, we need to think
about our performance metric. Management objectives are usually tied to some perfor-
mance metric that is used to compare and evaluate different management strategies.
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Power and clock resources are critical in the sense that providing a component with a
wrong input can be devastating. For this reason, components usually define the following
electrical specifications:

� absolute maximum ratings: constraints that must be observed at all times to prevent
the component from taking permanent damage

� recommended operating conditions: stricter constraints that must be observed to
ensure the correct operation of a component.

Based on these specifications, we define the term input constraints as follows:

Definition 4 (Input Constraints). At any given point in time, the input constraints of
a component are defined by its recommended operating conditions if the component is
supposed to be operational at this point and its absolute maximum ratings otherwise.

Remark. We refer to these constraints as input constraints since in all generality, a
component can exert no direct control over its inputs, while it can very well influence
the character of its outputs. For this reason, both absolute maximum ratings and recom-
mended operating conditions are mainly concerned with the component’s inputs.

For the reasons mentioned above, we argue that in a power and clock management sce-
nario, meeting all input constraints takes priority over the usual efficiency and utilisation
criteria.

In the remainder of this thesis, we hence will adopt this more concrete view on power
and clock management:

Definition 5 (Power and Clock Management). Power and Clock Management is con-
cerned with managing the state of conductors, in a fashion that respects every compo-
nent’s input constraints while satisfying consumer demands.

Remark. On some platforms, there might exist certain consumer demands that cannot
be fulfilled without violating any input constraints. In the context of this thesis, we
assume that power and clock management is allowed to fail by refusing to comply in the
face of such demands, rather than striving to provide a good approximation.

The state of conductors is given by their measurable electrical characteristics such as
voltage, frequency and current. Commonly, voltage and frequency can be regulated to
a stable, static value by the platform’s producers. The current that is flowing across a
conductor at any given point in time, however, depends on the dynamic power require-
ments of the attached components. These are in turn determined by the load the system
is experiencing.

Because of this difference, we refer to voltage and frequency as stable conductor charac-
teristics whereas current is volatile.

Using these concepts, we can further classify power and clock management into two
different categories:
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Definition 6 (Static Power and Clock Management). Static Power and Clock Manage-
ment is about managing the stable characteristics of conductors.

Static Power and clock management can be accomplished directly by appropriately con-
figuring the outputs of the platform’s producers.

Definition 7 (Dynamic Power and Clock Management). Dynamic Power and Clock
Management handles exceptional platform events. This includes general platform failures
as well as volatile platform characteristics reaching critical levels.

This is usually accomplished as follows: the overall status of the platform is continuously
monitored. Whenever a fault or alert condition is detected, appropriate countermeasures
are taken. If, for instance, the current across a conductor exceeds a certain threshold,
power-limiting measures such as CPU throttling or an emergency shutdown are initiated.

3.2 Producers

From a physical point of view, the term transformer might be more appropriate than
producer : Naturally, any entity providing power or clock signals also consumes power in
one form or another. In our management context, we use the concept of a producer with
respect to an entity’s main purpose in the context of the platform and hence define it as
follows:

Definition 8 (Producer). A producer is an entity whose main purpose is the production
of platform resources, i.e. specific states on power or signal-carrying conductors.

In a modern computer system, producers are electronic circuits such as power supplies,
voltage regulators, oscillators and clock generators.

As described in [16], clock producers usually form a so-called Clock Tree. Similarly, for
several reasons that are detailed very concisely in ([10], p. 121), producers concerned
with power resources are commonly arranged in a multi-level hierarchy. This results in
the following observation:

Observation 9. Producers are arranged in hierarchies.

We conclude this section with some more observations we have made when surveying the
producers present on the Enzian’s platform.

A producer is usually a distinct unit that is soldered onto the circuit board. The structure
of a producer is defined by the fixed layout of its pins, which are used to integrate the pro-
ducer into the platform by connecting the appropriate conductors. The purpose of a pin
and if it serves as an input or output is specified in the producer’s manual.

Observation 10. Producers feature a fixed set of pins that can be connected to con-
ductors. Each pin serves a pre-defined purpose.
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Generally, producers are focused on providing stable states on the conductors connected
to their output pins. They normally do so using a feedback loop that takes corrective
actions if the true value deviates too much from the required one.

Observation 11. When directed to supply a certain value of a stable conductor charac-
teristic, a producer will continue to output this particular value until it is told otherwise,
unless a fault condition occurs.

Having multiple, independent producer regulate the state of the same conductor does not
make a lot of sense; imagine two producers attempting to regulate the voltage across said
conductor to different values. An exception to this is the case where all such producers
can only be regulated jointly; for instance the up to four slaves operated by a MAX20751.
However, in such a situation we would also be modelling all such producers as a single,
joint producer. Thus we arrive at the following observation:

Observation 12. Any platform conductor’s state is generated by at most one producer.
Consequently, any conductor is an output to at most one producer.

The next conductor state a producer is required to provide is usually difficult to anticipate;
a user might press the power or sleep button at an arbitrary point in time and a sudden
increase in a CPU’s workload might prompt it to request an increase in its clock speed.
For this reason, a producer should be able to provide the whole range of output states
it can offer at any given point in time, regardless of the previous input and command
history.

Observation 13. In most situations, the range of output states a producer can provide
is only dependent on its current inputs and not on its previous input and command
history.

Remark. There are situations where this is not the case, most notably in connection
with bus communication. See section 5.6 for a detailed discussion of this.

3.3 Consumers

Definition 14 (Consumer). A consumer is an entity of the computer system that needs
to be supplied with specific power and clock inputs but is itself not mainly concerned
with the production of platform resources.

Remark. Contrasting this definition with said of a producer (Definition 8) it is clear
that the two are deliberately mutually exclusive.

The granularity of what is considered to be a single consumer is a matter of perspective.
On the Enzian, we could for instance identify the ThunderX CPU, its DRAM banks
and I/O ports as one consumer entity. In terms of complexity, consumers are commonly
several levels above comparatively simplistic producers and require much more specific
power and clock inputs.
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We conclude this section by making a few more observations about the nature of con-
sumers. Again, as in the producer section, these are based on the Enzian platform.

With the introduction of dedicated hardware for power and clock management, such as
BMCs, consumers can be designed in a platform-independent manner. It follows that:

Observation 15. Apart from interfaces to managers and the state of conductors serving
as inputs, the platform is generally transparent to consumers.

In order to receive the correct inputs, consumers thus impose specific demands on them.
(See section 3.4.1 for a discussion on how said demands might be communicated to the
platform’s managers.) Some such demands are the result of different power states a
consumer can adopt:

Observation 16. Consumers usually define a set of power states and transitions between
them. Each such power state and each transition step is associated with very specific
power and clock inputs that the consumer requires in that particular situation.

For example, the ThunderX’s manual defines a 7-step power-up sequence that has it
transition from a powered-down to a powered-on state ([7], p. 1827).

Furthermore, inputs to powered-on consumers can usually be fine-tuned to achieve dif-
ferent efficiency and performance trade-offs; an example for this is frequency and voltage
scaling. Hence:

Observation 17. A consumer might also dynamically demand changes to its inputs, for
instance in response to changes of its workload.

Remark. Although it would be more precise to say that the software running on a
consumer requests such dynamic changes, this distinction is not required for our purposes.

We have yet to discuss the meaning of consumer demands from a time perspective. Con-
ceptually, a consumer demand is fulfilled if the state of the consumer’s input conductors
agrees with the demand. In the context of power and clock management, it is quite
obvious that only transiently adhering to a demand is insufficient; a single voltage pulse
will clearly not be able to adequately power a CPU. It hence follows that a consumer
demand needs to be imposed on the corresponding input conductor state permanently,
until it is replaced by a more recent demand.

Observation 18. Consumer demands remain in effect until replaced by more recent
demands.

Remark. This nicely coincides with observation 11.

3.4 Managers

This section discusses the manager role of the platform, including the instruments and
mechanism a manager commonly has at its disposal to fulfil its purpose.
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Definition 19 (Manager). A manager is an entity concerned with the provisioning of
correct conductor states. It is aware of the consumer demands and controls and configures
the producers accordingly.

As stated in the introduction, the BMC is commonly heavily involved in this manager
functionality. Since we wish to explore power and clock management strictly in the
context of the BMC, we need to make the two assumptions about our platform.

Assumption 20. There is exactly one manager on the platform.

Nothing prevents the aggregation of multiple managers in a single system. However,
letting the same resource be managed conjointly by several managers will most likely
result in redundancy and inefficiency, so by stretching the definition of platform a bit,
we could most likely identify different, possibly hierarchical management domains that
we could consider to be individual platforms. For the purposes of this thesis, however,
we will think of our computer system to be a regular server system featuring a single
manager entity.

Assumption 21. This manager is a BMC.

That this is the case is not set in stone either: the ThunderX for instance, was originally
intended to provide a Voltage Regulator Module that would assume direct control of the
voltage regulator supplying the CPU’s core voltage ([7], chapter 40).

This has another implication for the BMC: In general, it cannot manage its own power
and clock inputs, since said are commonly a pre-condition for the BMC’s management
firmware to be able to run correctly. It hence follows that:

Observation 22. The BMC is not a consumer of the platform it is managing.

Remark. As mentioned in the introduction, the BMC is itself a microcontroller of non-
negligible complexity. This of course raises the question: who is managing the BMC’s
power and clock inputs? This might be the task of another, simpler management domain
from the perspective of which the BMC is a regular consumer. Or, alternatively, such
inputs might be provided in an always on if the computer system is plugged in fashion.
In any case, the bootstrapping and input management of the BMC is out of the scope of
this thesis.

Making use of the above assumptions, we can now discuss the management mechanisms
and instruments of a BMC specifically. We split this discussion into two parts, one
concerned with consumer awareness and the other with how the BMC exerts control over
the producers.

3.4.1 Consumer Awareness

To correctly manage the platform, a BMC must be aware of the consumer’s power and
clock demands. This happens either in an active fashion, whereby the consumer actively
communicates with the BMC or in a passive manner using hard-coded information.
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Consumer - BMC communication

There is a variety of different interfaces that seek to enable consumer-BMC communica-
tion. The most prevalent such interfaces include the Advanced Configuration and Power
Interface (ACPI) [8] and the Platform Environment Control Interface (PECI) ([10], p.
97). Also notable is the Intelligent Platform Management Interface (IPMI) [14], although
said aims to provide remote management capabilities to system administrators rather
than enabling consumer-BMC communication.

Hard-coded information

By definition, consumer requirements cannot always be obtained in an active manner:
an integral part of power management is the correct bootstrapping of consumers, during
which they commonly are not able to communicate their power requirements. Therefore,
the bootstrapping requirements are defined in the corresponding consumer’s manual and
are typically hard-coded into the BMC’s management firmware.

3.4.2 Producer control

Successful power and clock management requires two-way communication between the
BMC and the producers: In the context of static management, the BMC must be able to
transmit commands to correctly configure the producers. In order to perform dynamic
management, it must be able to receive feedback from them to continually monitor the
platform activity and react to potential failures.

How exactly this communication is realised is subject to the platform’s design and the
nature of the producers.

Enzian relies primarily on the general purpose input/output (GPIO) pins exposed by the
BMC. These pins are configurable by the software running on the BMC and can be used
as detailed in the following subsections.

GPIO as output

GPIO pins can serve as both logical inputs and outputs. If a pin is configured to be
used as an output, the management software can set the pin’s logical level to either high
or low. In such a case, we could argue that the BMC itself also adopts the role of a
producer, since the production of such a logical signal constitutes an integral part of its
management purpose. We thus arrive at the following observation:

Observation 23. The BMC is a producer

GPIO as input

A logical input to the BMC can by itself only provide a very limited amount of infor-
mation (high or low) and is hence commonly used as alert or fault signal, to indicate
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an (imminent) producer failure. As part of dynamic power and clock management, the
BMC will then appropriately react in an event-based manner.

GPIO and I2C bus lines

GPIO pins can also be connected to I2C bus communication lines. I2C is a bus commu-
nication protocol that allows communication between multiple devices connected to the
bus. Quite a few producers are I2C compliant, most by implementing the higher level
System Management Bus (SMBus) or Power Management Bus (PMBus) protocols that
build on I2C and SMBus respectively.

Every such bus-compliant device defines a set of commands that the BMC can issue,
both to query the current status of the device, including the readings of any integrated
sensors, and to control its power or clock outputs. The I2C bus is thus an instrument
that can be used in both a dynamic as well as a static management context.

The situation is, however, not quite as simple as it seems at first glance. The reason for
this is I2C’s solution to the following problem: If several devices concurrently try to pull
the line up to transmit a 1 and pull it to ground to transmit a 0, this may cause a short
circuit.

I2C avoids such a scenario as follows: Every bus line is pulled up to a supply voltage
level using a pull-up resistor. In order to communicate, devices may only pull the line
low. [11] At the same time, the I2C specification does not prevent powered-off devices
from pulling the bus lines low, which effectively renders the bus unusable until all such
devices are powered.

Observation 24. The I2C bus is not necessarily operational if any connected devices
are powered off.

3.5 Summary

In this chapter, we have discussed platform-level power and clock management. We
have realised that there is a direct correspondence between the resources managed in
this context and the state of platform conductors. We have then identified two types of
physical characteristics that comprise the state of such conductors: stable characteristics
that can be regulated to fixed values by the platform, and volatile characteristics that
change dynamically. Based on this distinction, we have subcategorised power and clock
management into static and dynamic management.

Additionally, we have defined three relevant roles in this management context: Producers,
Consumers and Managers. Using the Enzian platform as an example, we have made some
observations about the general nature and behaviour of entities adopting these roles.
We have discussed the means platform managers have at their disposal to monitor and
communicate with the other components. With the observation that I2C buses are not
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necessarily operational, we have encountered a first subtle issue that our management
solution must address.
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Chapter 4

Definition of Scope and Objective

In this chapter, we concretise the scope of operation and the objective of the thesis.

4.1 Scope

In this thesis, we are only going to address the topic of Static Power and Clock Manage-
ment, as it is defined in section 3.1. The reason for this is that, assuming ideal conditions
and every component working as expected, static management is sufficient to correctly
operate the platform. However, it goes without saying that in a real setting, the cor-
rect handling of potentially catastrophic events as performed by dynamic management is
extremely important for platform reliability and safety and must not be omitted.

As already hinted at, for static management to be reasonable by itself, we need to make
the following assumption.

Assumption 25. The platform is operating as expected and no exceptional events are
occurring.

Thus, neither input constraints nor consumer demands involving volatile characteristics
are of any concern to us. In order to simplify our reasoning about static management,
we redefine the state of a conductor to only refer to its stable characteristics.

Based on the definition of stable characteristics, as well as our assumptions about the
BMC being the platform’s only manager, we can furthermore make the following assump-
tion:

Assumption 26. Once the BMC stops altering the configuration of producers, the state
of the platform’s conductors will eventually stabilise and will remain unchanged until the
BMC issues further changes.

If all of the platform’s conductors feature such a stabilised state, we will call the collection
of all such states a stable platform state. For the purposes of this thesis, we are in need
of two more assumptions:
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Assumption 27. Consumer demands are time-invariant.

It is not unusual for power sequences to feature timing constraints. The power-up se-
quence of the ThunderX, for instance, requires that a signal indicating clock readiness is
asserted at least 3 milliseconds after the corresponding clock input has stabilized at its
target frequency [7].

For our purposes, however, we are going to incorporate such timing requirements in the
scheduling of consumer demands rather than the demands themselves. In the case of the
ThunderX, we will only begin to fulfil the demand ”Assert clock readiness” when at least
3ms have passed since we have reached a stable platform state after fulfilling the demand
that had the clock input transition to the mentioned target frequency.

Assumption 28. Consumer demands are not associated with any real-time constraints.
In particular, the BMC is allowed to wait until the platform has reached a stable state
before issuing further changes.

Arguably, most timing-sensitive tasks belong to the dynamic power and clock manage-
ment domain, which renders this assumption not unrealistic. Furthermore, considering
the platform-independent design of consumers (as indicated by observation 15), adding
very harsh real-time constraints to power sequences will severely limit the range of plat-
form designs that will be able to uphold said, and will thus most likely be avoided if
possible. Indeed, on the Enzian platform neither the ThunderX’s nor the FPGA’s power
sequences feature any real-time constraints.

In spite of this assumption, we consider a static management strategy that stalls the
realisation of consumer demands indefinitely as incorrect.

In the context of these assumptions, we can further concretise static management: With
consumer demands being permanent (observation 18) and time-invariant and in the ab-
sence of real-time constraints, static management will only be required to take action
upon a change in consumer demands :

Definition 29 (Static Management). Upon a change in consumer demands, static man-
agement must construct a sequence of actions to be executed by the BMC such that:

� the platform transitions to a new stable state that agrees with the new consumer
demands

� no input constraints are violated

No further static management actions must be performed until the consumer demands
change once more.
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4.2 The Objective

As mentioned in the introduction, we wish to explore an approach to a subset of Power and
Clock Management that separates policy from mechanism. Now that we have precisely
defined said subset in the last section, we can reason about the precise nature of the
already mentioned model and mechanisms that we aim to employ for this purpose.

The information our model reflects must be sufficient to support our intended mechanism.
In the following two subsections, we are going to first discuss the nature of the mechanism
we require before taking a closer look at the model.

4.2.1 The Mechanism

Pooling all the information from our definition of scope (4.1) and chapter 3, we can come
to more conclusions about the function and nature of our mechanism:

First of all, we can naturally split the objective of static management as defined by
definition 29 into two sub-goals, which we will discuss in more detail in the following two
subsections:

1. State Generation: The process of determining a new stable platform state that
observes the new consumer demands without violating any input constraints.

2. Sequence Generation: Generating the sequence of BMC actions that will have
the platform transition from the current stable state to this new stable platform
state.

State Generation

To see why this is necessary, we need to remind ourselves of observation 9, which stated
that producers are generally arranged in hierarchies. Consumers are mainly supplied by
the producers in the lowest level of these hierarchies. The state of the conductors in
the upper part of the hierarchy is hence generally transparent to consumers and thus
not explicitly constrained by consumer demands. Since the interconnections between
different hierarchy levels can be almost arbitrarily complex and convoluted, assigning an
appropriate state to each conductor is not necessarily a trivial problem. This is further
amplified by the fact that the platform’s input constraints (see definition 4) are dependent
on the required conductor states.

Sequence Generation

Not all of the BMC’s actions can be performed in an arbitrary sequence. A good example
are commands that are to be transmitted using the I2C bus. Before such a command is
sent, we must make sure of the following: The intended receiver should be powered, since
powered-off devices are usually not responsive to bus commands. Furthermore, as detailed
by observation 24, we must ensure that the I2C bus is operational. Consequently, we must
be able to order the BMC’s actions in a manner that observes all such restrictions.
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Consumer Demand Generation

There is another problem our mechanisms must solve. In the definition of static man-
agement, we implicitly assume that we are aware of the new consumer demands. When
we are required to have multiple consumers transition to another power state simultane-
ously, this is not necessarily the case: Not every platform is built in a manner that allows
different consumers to transition to another power state independently of the others.
Therefore, we also add Consumer Demand Generation to our required mechanisms:

Consumer Demand Generation: Generate a feasible interleaving of all con-
sumer transitions that are requested simultaneously.

4.2.2 The Model

Our model should be able to capture how a platform behaves. It is, however, not sup-
posed to describe the management behaviour of the BMC itself, since it is precisely this
behaviour we wish to correctly recreate using our model and mechanisms. We are thus
required to devise a model that captures the platform’s behaviour from the management
perspective of the BMC.

4.3 Summary

In this chapter, we have narrowed down the scope of this thesis to static power and clock
management. Under the assumption that every platform component is operating as ex-
pected, we have concretised our definition of static management. Based on this definition,
we have identified three mechanisms necessary to generate correct static management ac-
tions based on a suitable platform model.
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Chapter 5

Modelling the platform

This chapter is concerned with the nature of the platform model we have devised to
achieve the objective defined in the previous chapter.

5.1 Description of Structures

Before we define our platform model, we wish to introduce some notation in order to
unify the descriptions of certain structures found in our model. Since we aim to build
mechanisms directly on top of our model, not only is the semantic meaning of the dif-
ferent concepts important, but also the limitations imposed by the representation of the
information, i.e. the syntactical aspects. Consequently, we are not merely describing a
platform model but rather a modelling language for a platform.

In this chapter, we will represent structures in the following manner: Let S be some
structure, composed of attributes a1 to an. We will provide a schematic overview of the
structure in a form as displayed by table 5.1.

As in object oriented programming, we will use the notation S.a1 to indicate that we
access attribute a1 of a structure S. To increase the readability of subsequent code and
formulae, attribute names are kept short. We thus rely on the designation column to
provide a meaningful and human-readable identifier for the defined attribute.
Occasionally, we will encounter nested structures. We denote the syntactical structure of
any substructure with its italicised name.

Let Structure be some syntactical structure. We use the notation {Structure} to denote
a set of structures Structure and [Structure] to denote an ordered list.

Structure S
a1 designation for a1 syntactical structure of a1

...
an designation for an syntactical structure of an

Table 5.1: Schematic representation of structures
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A schematic overview of an instance I of our structure S would have the following format,
whereby terms in <> serve as descriptive placeholders:

I [S]
a1 <instance of a1 >

...
an <instance of an >

Table 5.2: Schematic representation of structure instances

5.2 General structure

For the perspective of the BMC, the platform is an ensemble of components with associ-
ated management actions. This natural structure is retained by our model: we describe a
platform’s behaviour by describing the behaviour of the involved producers (section 5.4)
and consumers (section 5.7), along with information on their composition (section 5.8).

This separation of descriptions is possible because every component has but a local view
on the platform: both producers as well as consumers (see observation 15) are only aware
of the state of conductors that are directly connected to them. Thus, their behaviour can
be described in isolation, independently of the whole platform composition.

This model structure has two main advantages: Firstly, a component’s behaviour in
isolation is easier to understand and is usually reasonably well-documented in its manual.
Secondly, we are only required to describe each type of component once, to then be able
to build arbitrary platform instances with it.

As an example, consider the platform instance depicted in figure 5.1: It features five
producer instances A to E and two consumer instances CPU and FPGA. Recalling
that we denote the structure a particular instance is based on with square brackets [],
as defined section 5.1, it follows that instances A and B as well as D and E have been
generated by the same producer description P1 and P3 respectively.

5.3 Representation of conductor state

This sections aims to discuss the representation of conductor states we use in our platform
model.

As detailed in section 3.1, the state of a conductor is given by the values of its physical
characteristics. This definition provides a quite natural structure for this section:

In a first subsection, we will think about how to represent a single such characteristic.
In a second subsection, we will discuss how to combine representations of several such
characteristics to represent the complete state of a conductor.
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Figure 5.1: A schematic example of a platform instance, with producer and consumer instances drawn
as boxes and the composition information abstracted as black arrows.

5.3.1 Representation of a characteristic

As is the case with most physical quantities, characteristics of conductors are of an
inherently continuous nature. However, measurements and regulations performed on
them are always of limited accuracy. For this reason, as well as to avoid precision and
efficiency concerns associated with real-valued representations, we apply a discretisation
to each such characteristic (see table 5.3).

For instance, the typical precision of voltage regulators found on platforms is in the
millivolt range. Thus, the voltages across conductors are described by a natural num-
bers representing millivolts. Similarly, the crystals used in oscillator circuits commonly
produce a ”sine-wave typically ranging from 32kHz to 50MHz”. [16]

characteristic representation
voltage Z (interpreted as millivolt)
frequency N (interpreted as kilohertz)

Table 5.3: The discretisation of stable characteristics

5.3.2 Representation of state

There are two reasons why the combination of characteristics to the state of a conductor
warrants special consideration:

On one hand, as discussed in section 4.2.2, our model must be capable of representing all
possible conductor states. Because of this, we need to describe state spaces rather than
individual states. For the purpose of this model, we will make use of the most general
(and obvious) way to describe such a state space: we simply specify the whole set of
individual conductor states present in the given state space. The actual implementation
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introduces some abbreviations to improve the conciseness of state space descriptions, see
section 8.1.1.

On the other hand, the characteristics of interest to us depend on the purpose of the
conductor. As detailed in section 4.1, we are only concerned with stable characteristics,
which happen to be voltage and frequency. Most generally, the state of a conductor can
be described by the value of its low voltage characteristic, its high voltage characteristic
and the value of the frequency characteristic with which it is alternating between:

Conductor State
low low voltage characteristic ∈ Z
high high voltage characteristic ∈ Z
freq frequency characteristic ∈ N

Table 5.4: The Conductor State structure

Remark 30. Of course the shape of the alternation is crucial too, if it is a sine function
as with alternating current or clock-shaped; for our purposes, we will simply push this
problem to the implementation.

As detailed above, we define the type of a conductor state space as follows:

State Space ⊆ {Conductor State}

We will encounter State Space as a description for syntactical structures (see table 5.1)
several times in subsequent sections.

However, the State Space S of a conductor W transmitting direct current can be described
more concisely: Let E be an element of S. Then E.freq should be 0 Hz and E.low = E.high.
Therefore, a single voltage characteristic would be sufficient to describe E. Similarly, the
State Space of a conductor transmitting a logical signal could simply be described as a
subset of {low (0), high (1)}. To prevent our modelling examples from becoming too
unwieldy, we will therefore represent a State Space S as follows:

S ⊆


Z if W carries direct current

{0, 1} if W is transmitting a logical signal

{Conductor State} otherwise

5.4 Producer Description

In this section, we take a closer look at how we can describe the behaviour of producers
as defined in section 3.2. As already established in said section, producers feature a fixed
layout of pins, serving as connections for pre-defined inputs and outputs to the producer.

30



Because of this, it makes sense to describe a producer’s behaviour in an input/output-
centred fashion.

As we have established with observation 13, the stable states a producer can apply to its
output conductors are mostly independent of the history of inputs and commands. For
the purposes of this model, this means that we are generally not required to maintain
any additional internal producer state. Thus, the descriptions of the behaviour of input
and output pins are sufficient to model the behaviour of the entire producer:

Consider therefore a producer with n input pins named IN1, IN2, .., INn and m output
pins named OUT1, OUT2, .., OUTm. Our producer description will then be of the
following format:

Producer
IN1 description of IN1 Input

...
INn description of INn Input
OUT1 description of OUT1 Output

...
OUTm description of OUTm Output

Table 5.5: The Producer structure

Remark. We choose our attribute names to correspond to pin names for reasons of
simplicity: In future sections, we will need to be able to retrieve the pin description that
corresponds to a given pin name.

As their names indicate, the Input and Output structures referenced in the producer
schematic describe individual input and output pins. We will discuss these structures
in the next two sections. Unsurprisingly, their focus is on the states that connected
conductors can or are allowed to attain.

In order to prevent this section from becoming too abstract, we are going to develop
the description of an example producer alongside the abstract producer structure. This
example producer is the MAX15301 [13], a voltage regulator produced by Maxim Inte-
grated. It produces a single direct current output featuring a voltage that can be specified
via PMBus.
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Figure 5.2: pin layout of the MAX15301, taken from its manual ([13])

Looking at the 32 pins the MAX15301 defines (see figure 5.2), the prospect of devising
a description of it seems daunting. Luckily, almost all of these pins are irrelevant for
our purposes: some just need to be connected to ground in a specific manner to ensure
correct operation, others offer points of connection for additional sensors and so on. For
us, the important pins (coloured in green in figure 5.2) are:

� PWR: an input pin that serves as power supply to the regulator.

� EN: an input pin that serves as a so-called enable signal: if the voltage across it is
interpreted as HIGH, the MAX15301 will regulate the output voltage to a desired
value, and if the voltage is interpreted as LOW it will not.

As an attentive reader might have noticed, we have not identified the output pin whose
voltage the MAX15301 is supposed to regulate. The reason for this is that our vision of
a producer as a stand-alone integrated circuit starts to crumble a bit here: In a section
called Design Procedure, the MAX15301’s manual meticulously describes how we must
combine several of its inputs and outputs with additional capacitors and MOSFETS and
whatnot to obtain the output the MAX15301 is capable of regulating. The electrical
properties of this additional circuitry are far too complex to toss at our platform model
(let alone a computer science bachelor student, such as myself), so we take the only
reasonable course of action:

We pretend that all this circuitry is a fixed part of the MAX15301 and define an addi-
tional, virtual output pin OUT that provides the output.
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As far as discussed, the producer instance corresponding to the MAX15301 look as follows:

MAX15301 [Producer]
PWR < Input instance >
EN < Input instance >
OUT < Output instance >

5.4.1 Producer Inputs

This subsection is concerned with the description of individual input pins to the producer.
There are several pieces of information that we must include in such a description:

Input
amr absolute maximum rating State Space
mon monitor functionality Monitor Action

Table 5.6: The Input structure

As detailed in section 3.1, producers define an absolute maximum rating for each of
their inputs, which must be observed at all times, independently of the states attained
by other inputs or outputs of the producer.

Occasionally, a producer offers monitor functionalities on some of its connected inputs.
These functionalities are especially important in the context of the sequence requirements:
In order to correctly time producer commands, our management solution must be able to
query the state of conductors to determine if previously issued commands have already
taken effect. In section 5.5, we will discuss the usage of these functionalities in more
detail.

Now that we have defined the nature of Input structures, we can add the descriptions of
the MAX15301’s two input pins, EN and PWR.

We wish to remark on the consequences of modelling a conductor as a logical signal, using
the example of the MAX15301’s EN input pin: as already mentioned in the description
of this pin, only the interpretation of the voltage across the EN input as HIGH or LOW
is of import. It is likely such an EN pin is connected to a GPIO pin of the BMC (see
section 3.4.2), which can only be set to either HIGH or LOW. If this were the case,
modelling the EN input as a logical signal would be the ideal choice: we convey exactly
the right amount of information and need not be bothered with exact voltage values. The
drawbacks of this choice are just as obvious: if the EN input is connected to an output
whose voltage value needs to be set by the BMC, the EN input description must include
information on the interpretation of different voltages and thus cannot be modelled in a
logical fashion.

For now, since we consider the MAX15301 in isolation, nothing speaks against modelling
it as a logical input. We thus define its absolute maximum rating as the set {0, 1} in
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accordance with the State Space abbreviations defined at the end of section 5.3. Since
no monitoring functionality on the state of EN is defined, we leave the mon field empty.

The maximum absolute rating of the PWR input is defined to be -0.3V to 18V. The
PMBus command ”READ VIN” returns the voltage across the PWR input.

Entering this new information into our schematic MAX15301 instance yields the following:

MAX15301 [Producer]

PWR
amr {−300, . . . , 18000}
mon READ VIN

EN
amr {0, 1}
mon

OUT < Output instance >

5.4.2 Outputs

When designing our platform model, we have decided to represent most of a producer’s
behaviour in the Output structures it defines. The main motivation behind this decision
is observation 12: while a conductor might serve as input to several components, it will
be connected to at most one output pin of a producer. It thus makes sense to pool as
much information as possible at the output pins, rather than composing it from various
input pins later on.

In light of this, the distinction between the output pin and the conductor connected to
it is becoming somewhat pedantic. In our descriptions, we will therefore occasionally be
referring to the unique conductor connected to an output pin as the output conductor.

The schematic overview of the Output structure is defined as follows:

Output
set state set method Conductor State → Command Action
poss state possibilities {State Possibility}

Table 5.7: The Output structure

The state set method defines a function that, given a desired stable state S of the output
conductor, returns an action the BMC can perform to have the conductor transition to
state S.

As the syntactic structure indicates, the state possibilities are a set of State Possibility
structures. These structures form the heart of the producer descriptions: they identify a
state space and a collection of requirements. The semantic meaning is as follows: every
state in the described state space can be attained by the output conductor, provided that
all given requirements are fulfilled.
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State Possibility
state output state space State Space
seq sequence requirements Initial State → Event Graph
req state requirements {State Requirement}

Table 5.8: The State Possibility structure

The output state space identifies that aforementioned state space, which can be
adopted by the output with which this State Possibility is associated.

The sequence requirements describe how the BMC can cause the state of the output
conductor to transition to a state in the output state space. We will discuss the nature
of this description in section 5.5.

As the term indicates, the state requirements are a collection of requirements on the
state of other conductors. The State Requirement structure is defined as given by table
5.9. The amount of nesting of structures might seem excessive at this point; however, in
later sections we will profit immensely from clearly defined attributes.

State Requirement
id a pin identifier string
state a state space State Space

Table 5.9: The State Requirement structure

Because of the local view each component has on the platform (see section 5.2), the only
other conductors that may be mentioned in req are conductors connected to one of the
pins defined by the producer. Recalling the pin names of our producer we defined in the
beginning of this section, the following must evaluate to true:

∀r ∈ req. r.id ∈ {IN1, . . . , INn, OUT1, . . . OUTm}

In terms of static management, the purpose of State Requirements is the representation
of Input Constraints as specified by definition 4 in section 3.1. However, as discussed
above, we also allow other output pins of the consumer to be referenced.

Closely studying the State Possibility structure reveals that all of the declarations of State
Spaces it allows are absolute: none may exhibit any dependence on the initial platform
state or any other kind of condition. This is in accordance with observation 13, which
stated that the stable states a producer can apply to its output conductors are generally
independent of the history of inputs and commands.
With all these concepts in place, we can return to our example producer: We assume
that our platform’s electrical ground is at 0V. Furthermore, since we have established
that every conductor is only driven by at most one producer (see observation 12), we
conclude that if the MAX15301 is not regulating the voltage across its OUT output, said
should drop to 0V. From the MAX15301’s manual, we can extract the relation between
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its inputs EN and PWR and its output OUT, which we have visualised in the following
level plot:

Figure 5.3: The relation between EN, PWR and OUT as a level plot

The State Possibilities we describe must be able to capture the two levels visible in the
plot. We could for instance identify the following four regions P1 to P4 (see figure 5.4)
and describe each as an individual State Possibility.

Note that it is not possible to correctly describe the red (0V) level using only one State
Possibility. The reason for this is that State Requirements only allow us to place in-
dependent restrictions on different conductors, which means that we can only specify
(potentially multiple, but then disjoint) convex regions. We could, however, do with only
three State Possibilities, but for reasons of symmetry we will stick to four.

Figure 5.4: Regions which we will describe as individual State Possibilities.

Filling in the descriptions of P1 to P4, we obtain the schematic instance as depicted by
table 5.10.
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MAX15301 [Producer]

PWR
amr {0, . . . , 14000}
mon VIN STATUS

EN
amr {0, 1}
mon None

OUT
poss

state {500, 5252}

P1req

id PWR
state {5000, . . . , 12000}
id EN
state {1}

seq Initial State → < Event Graph instance >
state {0}


P2req

id PWR
state {5000, . . . , 12000}
id EN
state {0}

seq Initial State → < Event Graph instance >
state {0}


P3req

id PWR
state {0, . . . , 4999}
id EN
state {1}

seq Initial State → < Event Graph instance >
state {0}


P4req

id PWR
state {0, . . . , 4999}
id EN
state {0}

seq Initial State → < Event Graph instance >
set s → VOUT COMMAND(s)

Table 5.10: A Producer instance for the MAX15301
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5.4.3 Summary

In this section, we have discussed how producers are represented in our platform model.
We have motivated their input/output pin-based descriptions with observations made
in section 5.4. We have encountered the State Possibility structure, which condenses all
information on and requirements of a specific State Space an output conductor can adopt.
We have yet to define the nature of the sequence requirements attribute (seq), which will
be the topic of the next section.

As an example, we have developed a producer description for a MAX15301 voltage regu-
lator. This process required us to make some assumptions about the platform’s electrical
ground and to decide whether to model the conductor connected to the EN pin as a
logical signal.

5.5 Events

As mentioned in the previous section, we need to describe how the BMC can cause
conductor state changes. This description must contain the specific commands the BMC
must issue, for instance the setting of GPIO pins used as outputs (see section 3.4.2).
However, the situation is slightly more complex than this: Some of the BMC’s commands
and some producers feature context sensitive behaviour.

A prime example for this are PMBus commands that do not have any effects if the
receiving producer is powered-down. Therefore, the producer must be powered before
we issue a PMBus command. Another example are producers like the ISL6334d [20]: if
its VID inputs feature certain values during power-up, the ISL6334d will immediately
power-down and needs to be power-cycled to become operational again. It is therefore
vital that we only start powering this particular producer after ensuring that the VID
inputs feature the correct values.

For this reason, a simple description of BMC commands is not sufficient. We need a formal
way to describe which conductor changes must happen before or after other conductor
changes; in other words, we need to specify dependencies between conductor changes.

To do so, the BMC requires descriptions of how each conductor state change can be
triggered and when it completes. We achieve this by associating two events with every
conductor: an Initiate event and a Complete event. The goal is to then to expose every
conductor’s events, to allow other conductors to define relations between their own change
and changes of other conductors. This is done on the level of State Possibilities: they
must define the Initiate and Complete events for the output conductor they are associated
with, along with other event relations. We will discuss the format of these descriptions
in detail in section 5.5.5.
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5.5.1 Initiate and Complete events

Initiate and Complete events relate to conductor state changes and are thus always as-
sociated with a static management action. Ultimately, we use these events to construct
said management action, namely in the context of the sequence generation mechanism.
However, to precisely define the meaning these events should have, we first define them
with respect to some fixed static management action.

To clearly distinguish between the more constructive definition of events that we will
make use of later on, and this semantic definition, we name the two versions differently:
Initiate semantic and Complete semantic in contrast to simply Initiate and Complete.

As mentioned above, our semantic definitions will rely on a fixed static management
action. This action is defined by some command sequence C, that has the platform tran-
sition from stable state S to stable state S ′. In this context, we define Initiate semantic
and Complete semantic as follows:

Definition 31 (Initiate semantic). Let w be some platform conductor.
Initiate semantic(w) is an index i such that for all x ≤ i, if we only executed the prefix
of C of length x, w would retain its initial stable state S(w).

Definition 32 (Complete semantic). Let w be some platform conductor.
Complete semantic(w) is an index j such that for all y > j, if we only executed the prefix
of C of length y, w would adopt its new stable state S ′(w).

Note that for all conductors w the following holds: If Initiate semantic(w) = i and
Complete semantic(w) = j is valid, then for any 0 ≤ x ≤ i and j < y < len(C), Initi-
ate semantic(w) = x and Complete semantic(w) = y are valid too. Initiate semantic(w)
= 0 and Complete semantic(w) = len(C) - 1 are trivially valid. We will use the term
tight to signify that Initiate semantic(w) and Complete semantic(w) are defined as the
largest respectively smallest indices possible.

Consider the case where conductor w is independent of command sequence C, i.e. none
of the commands in C have any effect on the stable state of w. In such a situation, we
would find that in their tightest definitions, Initiate semantic(w) = len(C) - 1 and Com-
plete semantic(w) = -1. For the sake of simplicity, we will redefine Initate semantic(w)
= Complete semantic(w) = -1 in this case, to signify that both events have happened
already. With this redefinition, it thus always holds that Initiate semantic(w) ≤ Com-
plete semantic(w).

We illustrate these definitions with an example. For the sake of simplicity, let us consider
a simple set of three GPIO pins P1, P2 and P3 that the BMC is using as outputs. We
describe the commands that set pin Pi’s voltage level to LOW (0) and HIGH (1) with
Offi and Oni respectively. We will furthermore describe any stable states of these GPIO
pins as a vector [S1, S2, S3], whereby Si ∈ {0, 1} denotes the state of pin Pi.
Consider the following static management action:
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Initial State Command Sequence C End State
[0, 0, 1] Off3, Off1, On2, On3, Off1 [0, 1, 1]

Table 5.11: An example static management action

In this example, the tightest definition of each pin’s Initiate and Complete event would
be as follows:

Pin Initiate semantic Complete semantic
P1 -1 -1
P2 2 2
P3 0 3

Table 5.12: Initiate and Complete events for the above management action (table 5.11)

Despite the Off commands at indices 1 and 4 referencing pin P1, we claim that P1 is
independent of C; this is because P1 is already in a LOW state and hence Off1 does not
affect its state.

The only command referencing pin P2 is On2 at index 2. Since P2 is initially LOW, On2
will cause it to transition to a HIGH state.

Merely looking at the initial and end state, one would be tempted to think that P3 is
unaffected by C. This is, however, not the case: If we were to execute a prefix of C of
length 1 to 3, P3 would end up in a HIGH end state.

With our semantic event definitions in place, we can once more refine our perspective on
static management:

5.5.2 Ideal Static Management

Recalling the example in table 5.11, we realise that the behaviour pin P3 is exhibiting
during this management action is best avoided. Imagine a scenario where P3 is connected
to the enable signal of the platform’s main power supply: this would result in us flicking
the lights of the entire platform off and on again, which would most likely be devastating
for any attached consumers.

Looking at the Initiate and Complete events which we defined for this example (see ta-
ble 5.12), we can see that they reflect P3’s misbehaviour : Initiate semantic(P3) is not
equal to Complete semantic(P3). Quite generally, we can make the following observa-
tion:
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Observation 33. Let w be a conductor with initial stable state s1 and final stable state
s2. Initiate semantic(w) 6= Complete semantic(w) has one of the following implications:

1. The event definitions are not tight

2. conductor w transiently attempts to adopt a stable state s3 different from both s1
and s2, which would manifest itself if we executed a prefix of the command sequence
of length between Initiate semantic(w) + 1 and Complete semantic(w).

In the context of static management, the second case should be avoided. Generally,
we cannot rely on our commands taking effect quickly enough that such a state s3 is
not expressed, and it might very well be the case that state s3 jeopardises the correct
operation of the attached consumers. Thus, we define an ideal static management action
as follows:

Definition 34 (Ideal Static Management Action). For any conductor w and for tight
definitions of Complete and Initiate events, the following should hold in context of every
fixed static management action:

Initiate semantic(w) = Complete semantic(w)

Thus, the complete state change of every conductor w boils down to either a single
command or none, in the case where w is independent of the management action (and
thus Initiate semantic(w) = Complete semantic(w) = -1 ). With this, we guarantee that
any conductor state fluctuate as little as possible. In particular, any fluctuations can be
solely attributed to the producers’ implementation of the requested state changes and are
therefore unavoidable.

The descriptions of these events and any necessary event dependencies are part of the
producer descriptions. Consequently, how close we come to achieving this ideal vision of
static management depends on the precision and completeness of the provided descrip-
tions. Before we discuss the structures our model uses to capture event descriptions,
we need to shift our perspective on events from fixed command sequences towards the
construction of command sequences:

5.5.3 Constructive Events

As mentioned in section 5.5.1, we will make use of Initiate and Complete events to
construct correct static management actions. Of course, our semantic definition of these
events as fixed indices in a known command sequence is not quite sufficient for this
purpose. We are therefore in need of a more general and flexible definition.

On a producer level, Initiate and Complete events are tied to a specific State Possibility
P . Conceptually, their definition must therefore correctly handle all static management
actions that lead to stable platform state that adheres to P . We will formally define
what adhere means in section 5.9.1, but conceptually it just means that all conductors
referenced by P are in a state as dictated by P .
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More concretely, let w be a platform conductor connected to a producer’s output pin
whose description contains some State Possibility P . Let S ′ be some stable platform
state that adheres to P and let S be an arbitrary initial platform state. We can then
define Initiate(w) as follows:

Definition 35 (Initiate). In every fixed command sequence C that has our platform
transition from S to S ′ and that observes all event restrictions imposed by P , Initiate(w)
defines or identifies a single command c with index i, such that Initiate semantic(w) = i
is valid.

It would be perfectly reasonable to define Complete events in an analogous fashion.
However, for the purposes of correctly constructing a command sequence this would not
quite suffice. Recalling our definition of ideal static management (definition 34), we would
hope to identify the same command c, and thus Initiate(w) would be indistinguishable
from Complete(w). However, as mentioned in the beginning of the events discussion, we
wish to use these events to express relations between conductor changes. Initiate and
Complete events must thus timing-wise form upper and lower bounds for the interval
during which the state change of w is happening. More formally, the following should
hold (see figure 5.5 for a visual representation):

Observation 36. Let A be a static management action the BMC performed and let T

be a function that applied to an event, returns the precise point in time at which said
event happened during action A. Let furthermore w be an arbitrary platform conductor
and Change(w) denote the time interval during which w’s state was changing because of
A. Then:

T(Initiate(w)) ≤ Change(w) ≤ T(Complete(w))
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Figure 5.5: The timing relation between Initiate and Complete events

To accomplish this, our Complete events must act as points of synchronisation. More
concretely, a Complete(w) event must be tied to a blocking monitoring action performed
by the BMC that repeatedly queries the state s of conductor w until it finds that s =
S’(w). Thus, with S, S ′ and P as defined for the Initiate event definition:

Definition 37 (Complete). In every fixed command sequence C that has our platform
transition from S to S ′ and that observes all event restrictions imposed by P , Complete(w)
defines a synchronisation action c on conductor w with target S ′(w), whereby index i of
c is such that Complete semantic(w) = i is valid.

Remark. With the condition Complete semantic(w) = i being valid, we ensure that the
blocking monitoring action will eventually complete.

With this definition, the Complete(w) event testifies that the change to conductor w has
measurably happened. Thus, our desired timing relations as detailed in observation 36
holds.

With our working definitions of Initiate and Complete events in place, we can now discuss
how we can describe relations between conductor changes by placing restrictions on the
sequence in which certain events should happen.

5.5.4 Event Relations

As mentioned above, we will allow producer models to formulate restrictions on the se-
quence in which Initiate and Complete events should occur. In this section, we will
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explore the possible restrictions together and evaluate their consequences and effective-
ness. In order to do this as clearly as possible, we first introduce a schematic illustration
of events and restrictions.

As the term Event Graph used in section 5.4.2 suggests, this illustration will be in the
form of a directed graph. Intuitively, our nodes symbolize events and the directed edges
will specify a ≤ partial order: a directed edge from event B to event A (see figure 5.6)
means that T(event A) ≤ T(event B). As in the last section, function T applied to an
event returns the point in time at which said happened.

Figure 5.6: An example graph involving events A and B, including the edge interpretation as ≤.

Recalling observation 36, it follows that for every conductor w, T(Initiate(w))≤ T(Complete(w)),
schematically:

Figure 5.7: The timing relation between Initiate and Complete events as a graph

For the purposes of this discussion, we will adopt the perspective of a specific platform
conductor w. We will attempt to describe how some event E concerning w (for instance
Initiate(w) or Complete(w)) relates to another conductor u with u 6= w. From the per-
spective of conductor w, the events Initiate(u) and Complete(u) are by themselves not
really of interest, since only the BMC, u’s producer and other producers offering monitor-
ing functionalities on conductor u might be aware of them, but not conductor w. What
can be of import, however, is when Change(u) is happening relative to event E. As indi-
cated by observation 36, defining restrictions between E and Complete(u) or Initiate(u)
can enforce certain relations between E and Change(u).

Generally, we can define four different restrictions between E and Complete(u) or Initi-
ate(u), which we have depicted in figure 5.8.
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Figure 5.8: All possible restrictions we can specify between event E and Complete(u) and Initiate(u)

We will discuss the implications of each of these restrictions in turn:

1. this particular restriction is not very useful: T(Initiate(u)) ≤ T(E) does not imply
any ordering of T(E) and Change(u)

2. this restriction ensures that event E happens before Change(u), since

T (E) ≤ T (Initiate(u)) ≤ Change(u) ≤ T (Complete(u))

3. as in the first case, the restriction T(E) ≤ T(Complete(u)) does not imply anything
about the relation of T(E) and Change(u).

4. this restriction ensures that event E happens after event Change(u):

T (Initiate(u)) ≤ Change(u) ≤ T (Complete(u)) ≤ T (E)

We have marked the two restrictions that do not make a lot of sense with red in figure
5.8. As can be seen quite nicely, only one arrow direction is sensible. More concretely, it
only makes sense to force Complete events to happen before event E and Initiate events
to happen after event E. If we were to omit all nonsensical restrictions, we would thus
eliminate any reflexivity present in our event graph. For this reason, we enforce our
partial ordering to be strict (<), and hence if there is an event sequence that observes all
restrictions, the corresponding graph is a directed acyclic graph (DAG).

Since by definition, our Initiate and Complete events directly correspond to BMC com-
mands, this implies that the BMC can issue commands sequentially. This is fortunate,
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since even if the issuing of two commands at the exact some time were sensible, the I2C
bus protocol is inherently sequential, so it might not be technically feasible. In order
to avoid confusion, we again present the relation picture above, but this time with the
correct strict relation:

Figure 5.9: an example graph involving events A and B, including the correct edge interpretation as <.

5.5.5 Sequence Requirements

In this section, we discuss how our model represents event descriptions and restrictions.
On a structural level, this representation is provided by the seq attribute defined by
the State Possibility structure presented in section 5.4.2, which features the semantic
structure Initial State → Event Graph.

The examples presented in the next section will make the need for the dependence on the
initial platform state more clear. Since the precise format in which this initial state is
expressed is irrelevant for our purposes, we focus our efforts on the Event Graph structure.
Schematically, said is represented as follows:

Event Graph
init Initiate event description Initiate Event | Happened
bI before Initiate {string}
aI after Initiate {string}
bC before Complete {string}
aC after Complete {string}
req Happened Requirements {(string, string)}

Table 5.13: The Event Graph structure

Note that for any conductor W , the natural relation Initiate(W) ← Complete(W) is
considered a law of nature and therefore does not need to be specified explicitly by an
Event Graph structure.

Studying this representation closely, one might wonder why this schematic representa-
tion lacks a Complete event description. This is due to our ideal static management
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vision that we have established in definition 5.5.2: if we manage to adhere to said, Initi-
ate semantic(W) = Complete semantic(W) for all conductors W. Translating this to the
constructive Initiate and Complete event definitions we are making use of, this means that
the inherent relation Initiate(W) ← Complete(W) is sufficient to describe Complete(w)
correctly (see definition 37). If a platform description does not adhere to this ideal case,
the aI and bC attributes can be used to work around the lacking explicit Complete event
description.

The init attribute defines the character of the Event Graph structure. It will either take
the form of an Initiate Event structure or will be set to Happened, to signify that the
state of the corresponding conductor will remain unchanged by this static management
action and therefore the corresponding Complete and Initiate events have taken place
in the past already. In order to ensure that the conductors state remains unchanged,
additional requirements can be specified using the req attribute. The bI, aI, bC, aC
attributes remain unused in this case. We will dedicate the next subsection to the Initiate
Event structure.

The semantic meaning of the bI, aI, bC and aC attributes is straightforward: They
allow for the specification of event restrictions as we have seen in the previous section.

Let Out be the Output structure this Event Graph structure belongs to. Then, in the
notation used in the last section, conductor w corresponds to the conductor defined by
Out and event E is Initiate(Out) for attributes bI, aI and Complete(Out) for bC, aC
respectively.

The type of event that is sensible to reference is implied by the attribute. bI, for instance,
allows to specify events that should happen before Initiate(OUT) and should thus only
refer to Complete(u) events of other conductors u. It is hence sufficient to only specify
these conductors u, which is precisely what is accomplished by the set of strings that
comprises the syntactic structure of these attributes. Similar to State Requirements,
these strings may only reference conductors that are connected to pins the producer
defines: Again recalling our original producer definition, the following must hold:

∀ id ∈ (bS ∪ aS ∪ bC ∪ aC). id ∈ {IN1, . . . , INn,OUT1, . . .OUTm}

As mentioned above already, the req attribute is used only if init is set to Happened. In
this case, we can specify an additional set of requirements in the following format: An
element (A, B) of req specifies that the change to conductor A must happen before the
change to conductor B. This thus corresponds to the following event restriction:

47



Figure 5.10: Graphical representation of the req attribute

As is the case with the aI, bI, etc. attributes, req may only reference conductors that are
connected to pins the producer defines. Thus:

∀ (A, B) ∈ req. (A ∪B) ⊆ {IN1, . . . , INn,OUT1, . . .OUTm}

5.5.6 Initiate Events

As already hinted at by our definition of Initiate events (see definition 35), there exist
two main categories of Initiate events: Explicit Initiate events that define a command
and Implicit Initiate events that identify a command. More concretely, we define these
two types as follows:

Let w be a platform conductor. We refer to Initiate(w) as an explicit event if w’s state
change is triggered by a command that directly targets conductor w. In our model, this
command directly corresponds to the set attribute defined by w’s output conductor. An
example for this would be conductors attached to GPIO pins the BMC is using as output.
The BMC can directly set such conductor’s state to high or low using a corresponding
command.

We call Initiate(w) implicit if the action associated with it directly updates some other
conductor w’, w 6= w’. The state of conductor w then changes as a consequence of the
update to w’. This would for instance be the case in the following situation: Consider a
MAX15301 that is currently regulating its output voltage to 5V. Let w be the conductor
connected to its OUT pin and w’ the conductor connected to its EN pin and a GPIO pin
of the BMC (see figure 5.11). If now the BMC sets the logical level of w’ to LOW (0),
this will cause the MAX15301 to stop regulating the voltage across w, which will as a
result drop from 5V to 0V.

The first attribute of an Initiate Event structure identifies the corresponding event as
explicit or implicit.

Initiate Event
type Initiate event type ∈ {Explicit, Implicit}
sub Implicit event type ∈ {First, Last}
events Related events ∈ P(String)

Table 5.14: The Initiate Event structure
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Figure 5.11: Situation used to provide an Implicit Initate Event example

If the event type is explicit, all further attributes are irrelevant; in practise, we will not
draw the remaining attributes for explicit Initiate Event instances. Otherwise, they have
the following meaning:

The events attribute identifies a set of conductors, whose Initiate events collectively
define the implicit event described by this structure. As always, the local view a producer
has on the platform only allows this attribute to reference conductors connected to other
pins the producer defines:

∀ E ∈ events. E ∈ {IN1, . . . , INn,OUT1, . . .OUTm}

The implicit events that need to be described for producers on the Enzian can all be
further classified into two distinct subcategories: First and Last events. These subcat-
egories define how the events referenced by the events attribute must be interpreted:

A First Implicit Initiate event is one where any of the referenced events by itself is suffi-
cient to trigger the Initiate event described by this structure. Thus, this type of Implicit
event is resolved to the time-wise first event to happen of the events referenced in the
events attribute. An example for this is the last State Possibility instance described by
our sample producer MAX15301:

state {0}

req

id PWR
state {0, . . . , 4999}
id EN
state {0}

seq < Event Graph instance >

Table 5.15: Last State Possibility instance defined by OUT output pin of a MAX15301

As indicated by the other State Possibilities, both the EN signal being disabled as well
as PWR dropping below 5V by themselves would be sufficient to cause the voltage across
OUT to drop to zero.
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A Last Implicit Initiate event is one where the combination of the referenced events
triggers the Initiate event described by this structure. An example could be a producer
that regulates its output to a fixed, statically defined voltage and will start to do so as
soon as all its supply voltages and enable signals are online. Consequently, a Last Implicit
event is resolved to the time-wise last of the referenced events that happens.

5.5.7 Sequence requirements for the MAX15301

In this section, we will discuss how we can describe adequate sequence requirements for
the MAX15301. Our discussion will be driven by the following visualisation, which we
had introduced in section 5.4.2:

Instead of exhaustively describing all sequence requirements the MAX15301 must specify
for its OUT output, we will focus on a select few descriptions, which exemplify the use
of all attributes defined by the Event Graph structure. Furthermore, we will specify
every description in a fashion that provided that the event descriptions of the conductors
connected to inputs PWR and EN adhere to ideal static management (see definition 34),
our own descriptions for OUT will adhere to ideal static management too. This will
provide us with a few insights about the quirks and general feasibility of ideal static
management.

With the assumption that EN and PWR adhere to ideal static management, it follows
that any of their state transitions are, if sensibly implemented by the corresponding
producer, smooth and happen in a direct manner without unnecessary detours to other
stable states. In our discussion, we will occasionally refer to this smoothness assumption.

Recall that the seq attribute to which our event descriptions are tied on a State Possibility
level (see section 5.4.2) is of the form Initial State → Event Graph, i.e. depends on the
Initial State from which we wish to transition to the new State Possibility. We will
therefore specify which transition our description is attempting to accomplish in the
paragraph headers in the following format:

Pi → Pj

Whereby Pi denotes the State Possibility instance corresponding to our Initial State and
Pj the State Possibility instance we wish to achieve. Thus, the description would be
included in Pj.

50



P1 → P4 We have already used this particular transition as a good example of when
a First Initiate event might occur. Because of our smoothness assumption, we do not
need to impose any further event requirements to adhere to ideal static management: No
matter how we leave P1 (the green, dotted quadrant), as long as long as the state changes
of EN and PWR do not feature any detours, the transition of OUT from (0.5V - 5.252V)
to 0V will be smooth.

P1 → P4 [Event Graph]

init
type Implicit
sub First
events {PWR, EN}

Table 5.16: The Event Graph instance for P1 → P4

P2 → P3 From an ideal static management perspective, this transition is pretty inter-
esting. Because of our smoothness assumption, we can imagine three fundamental ways
in which a transition from P2 to P3 could happen. We have visualised these in our level
plot:

Figure 5.12: Possible transitions from P2 to P3 within the MAX15301’s level plot

Since the state of OUT is 0V in both P2 and P3, according to our ideal management
restrictions we must ensure that it remains at 0V during the whole transition. This
restriction has the following consequences on our transitions:

1. This transition is inadequate, since we pass through the green, dotted quadrant
(P1). Therefore, OUT might transiently adopt a state described by P1 (0.5 to
5.252 V).

2. This transition fulfils our requirement: our transition is completely contained in the
red (grid pattern) quadrants and OUT will thus always feature 0V.

3. Technically, this transition is fine; however, for the transition to happen exactly like
this, the changes of EN and PWR must happen simultaneously, which we cannot
enforce with our event restrictions
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Thus, the only viable transition corresponds to (2), which requires the change of PWR
to happen before the change in EN. The corresponding Event Graph instance defines
the Initiate and Complete events as already happened, while imposing the additional
requirement that Complete(PWR) ← Initiate(EN):

P2 → P3 [Event Graph]
init Happened
req {(PWR, EN)}

Table 5.17: The Event Graph instance for P2 → P3

P1 → P1 This corresponds to a transition from the green, dotted quadrant to itself,
which designates an OUT state of 0.5V to 5.525V. To communicate to the MAX15301
which voltage it is supposed to provide, the PMBus command VOUT COMMAND is
used, which we have defined as the MAX15301’s set attribute. Consequently, our Event
Graph for this transition will feature an Explicit Initiate Event, since we require the BMC
to issue said command.

Due to our smoothness assumption, PWR and EN will not change their state during this
transition and thus no further event restrictions must be imposed. The resulting Event
Graph looks as follows:

P1 → P1 [Event Graph]
init type Explicit

Table 5.18: The Event Graph instance for P1 → P1

(P2, P3, P4) → P1 We must elaborate on the exact operation of the MAX15301 for
our last example. As mentioned above, the VOUT COMMAND is used to indicate to the
MAX15301 which output voltage in the range (0.5V to 5.252) it is supposed to provide.

What happens, however, if we transition from P2, P3 or P4, where OUT features voltage
0V to P1 without specifying any voltage? In this case, the MAX15301 will regulate OUT
to some default voltage. Our description of the MAX15301 does not provide us with any
indication of what this default voltage might be. Consider the case where we want some
output voltage V on OUT. Since we cannot determine if V corresponds to this default
voltage, this has the following implications for any transition from (P2, P3, P4) to P1:

� We must always explicitly state which output voltage V we need, since we (natu-
rally) cannot rely on V = default voltage. Thus, our Initiate Event must be explicit
since we need the BMC to issue our VOUT COMMAND

� In order to adhere to ideal static management, we must prevent the MAX15301
from regulating to its default voltage.
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This furthermore has the following consequences for the circumstances during which our
Explicit Initiate Event must happen:

1. The MAX15301 is only responsive to bus commands when powered. Consequently
PWR must be in some state {5V - 14V}, i.e. we must be in quadrants P1 or P2
when Initiate(OUT) occurs

2. The Initiate event may not occur in the green quadrant (P1), since otherwise the
MAX15301 might transiently regulate OUT to the default voltage.

It thus follows that our Initiate event must occur in the quadrant described by State
Possibility instance P2. For initial states in P2 and P4 this could be visualised in our
level plots as follows (with or without the white arrow, depending on whether we start
from P2 or P4):

Figure 5.13: Possible transitions from P2 or P4 to P1 within the MAX15301’s level plot

As can be seen in this visualisation, the corresponding Event Graphs need to enforce that
the change to PWR completes before our Explicit Initiate event and the change to EN
is initiated after our Initiate event and must complete before we attempt to verify that
the OUT conductor has reached the desired state, i.e. before our Complete event. This
results in the following Event Graph instance:

(P2, P4) → P1 [Event Graph]
init type Explicit
bI {PWR}
aI {EN}
bC {EN}

Table 5.19: The Event Graph instance for P2, P4 → P1

Note that in this case, our Initiate event definition is not tight but instead a conservative
approximation. The actual change of OUT is triggered by Initiate(EN), which we enforce
to happen after Initiate(OUT) (using the aI attribute). However, this approximation does
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not negatively affect our ability to find a viable sequence: Initiate(OUT) does not have
any visible effect on the platform state apart from changing the internal configuration of
the MAX15301.

For an initial state in P3, the situation is different. Since Initiate(OUT) must happen in
quadrant P2, we would need to take the following path through our level plot to adhere
to ideal static management:

Figure 5.14: Possible transitions from P3 to P1 within the MAX15301’s level plot

Studying this, we see that the behaviour of conductor EN does not adhere to ideal static
management any longer: we change from state 1 to state 0 and back again. It follows
that with our current way of modelling the MAX15301, it is not possible to transition
from P3 to P1 in a fashion that adheres to ideal static management. One partial remedy
for this is the modelling of default states, which we will discuss in section 5.6. With that,
we can transition from P3 to P1 ideally, provided that the voltage we wish for OUT to
adopt corresponds to the default voltage.

5.5.8 Summary

In this section, we have discussed how our model allows us to express restrictions on
the timing relations between different conductor state changes. We have introduced
the notion of Initiate and Complete events both in the context of a fixed command
sequence as well as in a constructive sense. Based on these events, we have developed
the concept of ideal static management that dictates that transitions between different
conductor states should happen as smoothly as possible. We have then introduced the
Event Graph structure our model uses to represent event restrictions. To conclude, we
have developed some example Event Graphs for the MAX15301 and we have realised that
in some situations, ideal static management is impossible to achieve.
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5.6 Modelling the I2C bus

Until now, we have ignored I2C buses in our discussion of the platform model. We firstly
wish to recall observation 24, which stated that the bus is not necessarily operational
if any attached component is powered-off. This is something our platform model must
not ignore: if an Initiate event of a conductor entails a bus command, we need to make
sure that the bus is operational at that point in time, otherwise our generated command
sequence will fail to accomplish the intended static management action.

In order to appropriately extend our platform model to correctly handle such buses, we
must introduce some indicator of bus operability and we must extend our bus-compliant
producer descriptions to take this indicator into account. We will discuss these extension
in the next two subsections.

5.6.1 Operability indicator

Thinking about all the already established structures, modelling such an indicator as a
logical output produced by an additional producer seems quite natural. We thus introduce
a new producer instance that is concerned with the production of this logical output:

Bus [Producer]
BUS < Output instance >

Table 5.20: The Producer instance for an I2C bus

When attempting to decide how the referenced Output instance should look like, we very
quickly realise the shortcomings of this approach: A bus is not a natural fit for a producer
description. First of all, a bus does not feature a fixed pin layout ; the State Possibilities
of BUS are dynamically determined by the components attached to the bus. Secondly,
and more significantly, a BUS logical signal is not quite a conductor in a static power
management sense. We will discuss this issue in detail in section 5.6.4.

5.6.2 Producer extensions

Let P be a bus-compliant producer instance. For P to reference a bus indicator in its
State Possibility instances, it must add this indicator as an additional input (BUS).

Furthermore, P must define the constraints it itself imposes on the indicator, namely a
set of State Requirements that need to be imposed on P’s input conductors to prevent P
from pulling the bus low (busreq). Schematically, we add the following elements to P:

55



P [Producer]
...

BUS
amr {0, 1}
mon

busreq {<State Requirement instance>}

Table 5.21: Adding the bus operability indicator to a bus-compliant Producer instance

It remains to discuss the integration of this bus indicator into the State Possibility in-
stances defined by P. Let PBUS be a State Possibility instance of P, whereby the sequence
requirement function PBUS.seq contains an argument value pair (initial, event), such
that the Event Graph event features an explicit Initiate Event that requires issuing a
bus command.

We show how PBUS can be modified for this particular argument value pair. Ignoring
any other such pairs, PBUS is of the following form, with the terms in bold serving as
place holders for the actual values.

state state
req req

seq initial →

init init
bI bI
aI aI
bC bC
aC aC

Table 5.22: format of PBUS when ignoring other argument value pairs next to (initial, event)

To take the operability of the bus into account, we must replace PBUS with the following
two new State Possibility instances:

state state

req
req
id BUS
state {1}

seq initial →

init init
bI bI ∪ {BUS}
aI aI
bC bC
aC aC

state state

req
req
id BUS
state {0}

seq (initial ∧ BUS = {1})→

init init
bI bI
aI aI ∪ {BUS}
bC bC
aC aC

Table 5.23: How to include bus operability in the above State Possibility instance

The first option, with differences to the original state possibilities coloured in green,
ensures that the bus will transition to an operational state before the Initiate event
(and thus before the pmbus command is issued).
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The second option, with differences to PBUS coloured in purple, has the bus transition
to an inoperable state after the Initiate event. This requires ensuring that the bus was
operational in the beginning and must thus modify initial accordingly. Note that in the
case of an initial platform state corresponding to (initial ∧ BUS = {0}), there exists
no Event Graph structure that could ensure that the bus is operational when the bus
command is issued.

5.6.3 Default States

When discussing examples of sequence requirements for the MAX15301 in section 5.5.7,
we have already encountered an issue that could have been mitigated by extending our
model to feature default states. Now that the bus being operational is not a given any
more, we are forced to do so. Before we explain our reluctance, we need to give a more
concrete definition of what exactly a default state is:

Definition 38 (Default State). Let OUT be an output of a bus-compliant producer P.
Let C be the last bus command that requested a certain state S of OUT and let T(Down)
correspond to the most recent point in time at which P was powered-down. Furthermore,
let D be the statically defined default value for OUT. Then, the default state of OUT is
defined as follows:

default(OUT) =

{
S if T(C) > T(Down)

D otherwise

Or, less formally, as soon as a certain state is requested of OUT, said state is stored in
the volatile memory of P. The default state is thus either this stored state or the value
D if no stored state is available.

Clearly, this concept is in fundamental conflict with observation 13: The output states a
producer can provide is generally independent of the previous input and command history.
As already mentioned in section 5.4.2, by not allowing the state and req attributes of
State Possibility to express any dependence on previous platform states, our producer
descriptions are inherently based on this observation. Consequently, our basic platform
model does not allow for the proper inclusion of default states.

This is entirely on purpose: extending our model to properly express default states would
lead to a massive increase in descriptive complexity. Instead, we deal with this problem
on the implementation level (see section 8.1.4).

5.6.4 Issues

As mentioned in subsection 5.6.1, a bus does not fit the concept of a producer very
well. As a consequence, doing so severely restricts the platform behaviour our model can
capture in the following two situations.

Issuing a bus command that causes the bus to be pulled low Consider the
following schematic platform instance:
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Figure 5.15: Platform instance illustrating the issue with bus commands that pull the bus low

Let us assume that both P1 and P2 are descriptions of bus-compliant producers and
that A and B are connected to the same bus. Let us furthermore assume that the bus
requirements P2 specifies require conductor W to supply at least X volts to prevent
producer B from pulling the bus low. Consequently, our model does not allow the voltage
of W to be set to a value Y < X via a PMBus command to producer A.

To see why this is the case, we recall that with the producer extensions we described in
section 5.6.2, the corresponding State Possibility instance for conductor W would be of
the following format:

state state

req
req
id BUS
state {0}

seq (initial ∧ BUS = {1})→

init init
bI bI
aI aI ∪ {BUS}
bC bC
aC aC

However, with W transitioning to state Y and therefore causing B to pull the bus low,
Initiate(W) = Initiate(BUS). It follows that adhering to Initiate(W) ← Initiate(BUS) as
required by attribute aI is impossible.

transiently available bus As already hinted at in subsection 5.6, modelling the bus
operability as a logical platform conductor is not quite fitting. The reason for this is that
our model is entirely focused on describing stable conductor states. The operability of
a bus is not something that is required to assume a stable state. On the contrary, we
are mainly interested in its value while we are performing static management actions.
Consequently, it would in reality be sufficient for the bus to become operational only
transiently while we issue the necessary commands, but our model cannot express this.

This is an issue in a situation like the following:
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Figure 5.16: A Platform instance illustrating the issue of a transiently available bus

Let us assume that P is the description of a bus-compliant producer that pulls the bus low
when powered off and that Producer instances P1 and P2 are connected to the same bus.
Consequently, in the situation shown above, the bus would be pulled low by Producer
instance P2.

The depicted Consumer instance now requests the following states for its input conduc-
tors: {W1: 0V, W2: 0V, W3: 3V, W4: 5V}, which exactly corresponds to the mirrored
situation. Let us assume that 3V does not correspond to the statically configured default
state of conductor W3, and must therefore be set by a bus command. In this case, there
exists a transition that realises the requested change: We firstly change the state of con-
ductor W4 to 5V. This causes the bus to become operational such that we can request
3V for conductor W3. We then change the state of W1 to 0V, which causes the bus to
be pulled low again.

However, our model will not be able to find this transition because as already mentioned
in section 5.6.2, no Event Graph exists that could ensure that the bus is transiently
operational when we issue a command.

5.6.5 Summary

In this section, we have addressed the issue of bus operability that we had already iden-
tified in chapter 3. We have presented a possible solution that models the I2C bus as an
additional platform producer which outputs a logical signal indicating whether the bus
is operational. In this process, we have realised that the nature of such a bus operability
conductor fundamentally differs from a regular platform conductor. As a consequence,
we have found our solution to be inadequate in two specific situations.
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5.7 Consumer Description

Compared to producers, consumers are fairly easy to describe. Their general description
layout is closely tied to the observations we made about consumers in section 3.3: We
established that consumers demand certain states on their inputs and usually define a
set of power states and transitions between said. We thus consider a consumer featuring
n input pins named IN1, IN2, .., INn and m power states P1, P2, ..., Pm. Our consumer
description will then be of the following format:

Consumer
IN1 description of IN1 Input

...
INn description of INn Input
P1 description of P1 {State Requirement}

...
Pm description of Pm {State Requirement}
trans power state transitions String × String → [{State Requirement}]

Table 5.24: The Consumer structure

The syntactical structure of attributes IN1, ..., INn precisely correspond to the Input
structures we have defined for producers.

Attributes P1 to Pm describe the consumer demands associated with the corresponding
power state. The State Requirement structure used for this purpose has also already
been defined in the context of producer descriptions. Similarly, we only allow the state
requirements to reference Inputs that are defined by our consumer. Thus, for every power
state attribute Pi the following must hold:

∀ p ∈ Pi. p.id ∈ {IN1, . . . , INn}

As hinted at by the syntactical structure, the trans attribute is supposed to be a function.
It takes two strings as input and returns an ordered list of State Requirement sets.
It describes the transition between any two different power states; let Pi and Pj be
two arbitrary power states defined by our consumer. Then, trans(Pi, Pj) describes the
transition from power state Pi to power state Pj. Once more, State Requirements are
only allowed to refer to the inputs defined by the consumer. Thus:

∀ x ∈ {0, ..., length(trans(Pi, Pj)) - 1}, p ∈ trans(Pi, Pj)[x] . p.id ∈ {IN1, ..., INn}

That we model consumer demands using the rather simplistic State Requirement struc-
ture is in accordance with the assumptions made in section 4.1: Consumer demands are
time-invariant and not associated with any real-time constraints.
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5.8 Platform Description

As mentioned in section 5.2, we piece the model of our platform together using the
individual producer and consumer descriptions and information on their composition. As
such, every component present on the platform is some named instance of a producer
or consumer description. We can then define the platform’s conductors by indicating
which output and input pins of which named instances it is connected to. Consider thus
a platform PF with n producers P1 to Pn and m consumers C1 to Cm and p different
conductors W1 to Wp. This platform’s description is then of the following format:

Platform
P1 description of P1 Producer

...
Pn description of Pn Producer
C1 description of C1 Consumer

...
Cm description of Cm Consumer
W1 connections to W1 Connection

...
Wp connections to Wp Connection

Table 5.25: The Platform structure

As detailed in observation 12, any conductor is an output to at most one producer.
However, it may very well happen that a conductor is an input to several components in
parallel. For this reason, our Connection structure, which specifies how the conductor in
question is connected, has the following format:

Connection
prod specifies output producer string
out specifies output pin string
in specifies input pins {(string, string)}

Table 5.26: The Connection structure

The prod and out attributes are quite self-explanatory: they identify the output pin the
conductor is connected to, by specifying the name of the output producer instance and
the output pin name. The following should therefore hold:

prod ∈ {P1, ..., Pn} ∧ type(PF.prod.out) = Output

The in attribute specifies the set of input pins: an element (A, B) of in indicates that
our conductor is connected to the input pin with name B of the named producer instance
A. Similar to the out and prod attributes, the following must hold:

∀ (A, B) ∈ in. type(PF.A.B) = Input
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As an example, consider the schematic platform instance depicted by figure 5.17. With
the pin names defined as indicated in the figure, the Connection instance of W5 would
be of the form as shown by table 5.27.

Figure 5.17: A schematic platform instance: Producer instances P1 to P5 and consumer instances C1
to C5 are drawn as coloured boxes and conductors W1 to W6 represented by black arrows. The pins
defined by each component instance are drawn as smaller boxes in a darker shade, with Input pins drawn
on the left and Output pins drawn on the right of component box.

W5 [Connection]
prod P4
out OUT1
in (C1, IN3), (C2, IN1)

Table 5.27: The connection instance for conductor W5 depicted in figure 5.17

Currently, our platform structure is unnecessarily bloated: Information on every con-
ductor is distributed over multiple component descriptions. In the next subsection, we
discuss how we can collect all information about a conductor in one Conductor struc-
ture. In subsection 5.8.2 we transform our Platform structure into a reduced and more
convenient form using the defined Conductor structures.

5.8.1 Conductor description

As mentioned above, we combine all information on a conductor in a single Conductor
structure:

Conductor
mon monitorng functionalties {monitor action}
set state set method Conductor State → Command Action
poss state possibilities {State Possibility}

Table 5.28: The Conductor structure
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Before we discuss how this structure is composed, we must make one last, important
observation. With our focus on stable conductor characteristics, namely voltage and
frequency, we find ourselves in a fortunate situation: In parallel circuits, these character-
istics remain the same across each parallel connection. We can therefore directly combine
all the conductor state information given by the different input and output pins, without
worrying how the conductor state might be distributed.

With this in mind, we can now discuss how we can reduce the redundant information
present in our system. Let PF be a platform instance and W a Connection instance
defined by PF. For the sake of simplicity, we define the following abbreviations:

out = PF.(W.prod).(W.out)

Thus, out points to the unique Output instance the conductor described by W is con-
nected to.

in =
⋃

(A,B)∈PF.W.in

PF.A.B

The set in collects all Input instances the conductor described by W is connected to.

We define the Conductor instance of W as follows:

W [Conductor]
mon

⋃
input ∈ in

input.mon

set out.set
poss

⋃
p ∈ out.poss

Reduce(p)

Table 5.29: The construction of a Conductor instance

The mon attribute simply collects all monitoring actions specified by the Input instances
in in.

The set attribute corresponds to the set attribute defined by out.

The poss attribute is constructed from all State Possibility instances defined by out. We
call a function Reduce on each such State Possibility instance P , which is supposed to
transform P to include all necessary composition and conductor information. In partic-
ular, Reduce should:

� crop the state space of W described by P.state to adhere to all absolute maximum
ratings defined by the input pins of W

� replace all mentions of pin names in P with the names of the connected conductors.

In order to define Reduce as precisely as possible without delving too much into the
nested State Possibility structures, we define the following convenience function:
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Let prod = PF.W.prod be the Producer instance that defines out and let pins = {IN1,
..., INn, OUT1, ..., OUTm} be the pinnames defined by prod. Then:

Rename: Structure → Structure

Rename(s) =

{
s s /∈ pins
w | (prod, s) ∈ PF.w.in ∪ {(PF.w.prod, PF.w.out)} otherwise

Whenever a structure s references a pin defined by prod, Rename will replace s with the
name of the unique conductor w connected to s. Of course, our platform specification
might leave some pins unconnected. In this case, Rename will fail and we will have Reduce
discard the entire State Possibility.

Thus, Reduce operates as follows:

Reduce: State Possibility → State Possibility

Reduce


P [State Possibility]
state state
req req
seq seq

 =

P [State Possibility]

state state ∩

( ⋂
input∈in

input.amr

)
req Rename(req)
seq Rename(seq)

Table 5.30: Reduce applied to a State Possibility instance

We conclude this section with a concrete example. Consider the schematic partial plat-
form instance described by figure 5.18, as well as the corresponding pin instances provided
by table 5.31:

Figure 5.18: A partial Platform instance, used to illustrate the creation of a Conductor instance for
conductor VDD
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P1.OUT [Output]

poss

state {500, ..., 4000}

req
id PWR
state {5000, ..., 55000}

seq Initial State → init
Implicit
First
{PWR}

...
set f3

P2.IN1 [Input]
amr {-100, ..., 3000}
mon mon1

P3.IN2 [Input]
amr {-300, ..., 2500}
mon mon2

Table 5.31: Pin descriptions corresponding to the partial platform instance shown in figure 5.18

The Conductor instance we would construct for conductor VDD would in this case look
as follows (changes compared to the description of P1.OUT are marked with blue):

VDD [Conductor]
mon {mon1, mon2}
set f3

poss

state {500, ..., 2500}

req
id 3v3 PSUP
state {5000, ..., 55000}

seq Initial State → init
Implicit
First
{3v3 PSUP}

...

Table 5.32: A Conductor instance corresponding to the above pin and Platform instances

5.8.2 Reduced Platform Description

As already mentioned above, the goal of this section is to describe the transformation of
the original Platform structure to a Reduced Platform structure. For this purpose, we
will use of the Conductor structures whose construction we have discussed in the last
section. But the Conductor structures alone are not quite sufficient:

Looking back at our original platform description, the only pieces of information that
we have not merged into our Conductor structures are the power states and transitions
defined by the platform’s consumers. This makes sense: our Conductor structure includes
all information related to the possible states said conductor can adopt and how we can
have it transition between different states. The power states and transitions defined by
consumers are conceptually on a higher level: they allow our management strategy to
generate suitable consumer demands if the consumer does not do so actively (as discussed
in section 3.4).

Since the Input structures defined by Consumers are already merged into the corre-
sponding Conductor structures, our Reduced Platform does not need to retain said. We
therefore introduce a Reduced Consumer structure that lacks these inputs:
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Consumer

IN1
description

Input
of IN1

...

INn
description

Input
of INn

P1
description {State Requirement}
of P1

...

Pm
description {State Requirement}
of Pm

trans
power state String × String →
transitions [{State Requirement}]

Reduced Consumer

P1
description {State Requirement}
of P1

...

Pm
description {State Requirement}
of Pm

trans
power state String × String →
transitions [{State Requirement}]

Table 5.33: The original Consumer structure compared to the Reduced Consumer structure

Since we described consumer power states and transitions in isolation, as was the case
with all component descriptions, we need to perform a renaming pass on them too. With
the Rename function as defined in the previous section, we thus arrive at the following
reduction:

Reduce: Consumer → Reduced Consumer

Reduce



C [Consumer]
IN1 IN1

...
INn INn
P1 P1

...
Pm Pm
trans trans


=

C [Reduced Consumer]
P1 Rename(P1)

...
Pm Rename(Pm)
trans Rename(trans)

Table 5.34: Reduce applied to a Consumer instance

Our Reduced Platform will thus be of the following format:

Reduced Platform
conductors platform conductors {W1, ..., Wp}
C1 description of C1 Reduced Consumer

...
Cm description of Cm Reduced Consumer
W1 description of W1 Conductor

...
Wp description of Wp Conductor

Table 5.35: The Reduced Platform structure

Whereby for the sake of accessibility, we have added the attribute conductors that
returns a set of all conductors that are described by the platform.
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Table 5.36: A schematic illustration of the platform reduction process. The picture on the right features
the original Platform instance with Producer instances P1 to P5, Consumer instances C1 and C2 and
Connections W1 to W6. The corresponding Reduced platform instance is depicted on the right, with
W1 to W6 now referring to Conductor and C1 and C2 to Reduced Consumer instances. The notation
Wi / Wj indicates that Wj may reference Wi.

To summarise the discussed platform reduction, we provide a schematic illustration of
the process in table 5.36.

5.8.3 Summary

In this section, we have discussed how our model allows us to compose different component
descriptions to a Platform instance. We have realised that the resulting construct includes
a lot of redundancy. In order to remedy this, we have introduced an additional Conductor
structure and described the transformation to a Reduced Platform instance.

5.8.4 A note on terminology

With this section, we conclude the structural description of our platform model. As
a consequence, any subsequent mentions of the defined model structures such as Re-
duced Platform, State Possibility, Event Graph etc. will always refer to instances of these
structures, not the structural definitions themselves. Always making this fact explicit by
adding the term ”instance” does not improve the readability of descriptions and argumen-
tations, as the description of table 5.36 illustrates. We therefore define any subsequent
reference of a model structure S to implicitly refer to an instance of structure S.

Furthermore, the transformation of a Platform to a Reduced Platform can be done au-
tonomously by our model. Since the Reduced Platform structure is much more conve-
nient, we will always assume that this transformation has been performed, and will not
actively distinguish between the two structures any more in the remainder of this thesis.

5.9 Implications

5.9.1 Valid Platform States

The intended semantics of our platform model already give some indication about which
platform states we consider valid. This section intends to formalise this idea; but before
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we can properly reason about stable platform states, we must define them with respect
to our platform representation.

Definition 39 (Platform State). Let P be a Platform. A Platform State is a function
that assigns a Conductor State to each Conductor defined by P. It is therefore a total
function of the following format:
Platform State: P.conductors → Z× Z× N

Before we give any definitions of validity, let us recall how valid Platform States relate
to our vision of Static Management. As we have formulated in definition 29, the stable
platform states we generate must adhere to all input constraints to be considered valid.
In our platform model, we have represented these input constraints using the absolute
maximum ratings attributes of Input structures and the State Possibilities in Output
structures. The reductions detailed in the last section resulted in the combination of
these attributes into the poss attribute of the corresponding Conductor instance.

We therefore need to argue about validity in the context of Conductors. Since our plat-
form’s input constraints are distributed over all Conductors, a Platform State must be
valid from the perspective of every individual Conductor to be valid in a global sense.
Recalling the semantic meaning of State Possibilities as defined in section 5.4, we firstly
formally define what it means for a Platform State S to be valid with respect to a State
Possibility Poss:

Definition 40 (Valid Poss). Let W be a Conductor and Poss be a State Possibility
defined by W. A Platform State S is considered to be valid with respect to Poss if the
following predicate evaluates to true:

Valid Poss(S, Poss, W) = S(W) ∈ Poss.state ∧

( ∧
req ∈ Poss.req

S(req.id) ∈ req.state

)

In other words, Valid Possibility demands that S(W) agrees with Poss.state and all State
Requirements defined by Poss are observed. Using this definition, we can now define the
predicate Valid Conductor(W, S) that indicates if Platform State S is considered valid
from the perspective of Conductor W as follows:

Definition 41 (Valid Conductor). Let W be a Conductor of Platform P. The Platform
State S is considered valid with respect to W if the following holds:
Valid Conductor(W, S) = ∃ Poss ∈ P.W.poss . Valid Poss(S, Poss, W)

As discussed above, the global validity predicate Valid(P, S) of a Platform P and a
corresponding Platform State S can thus be expressed as:

Definition 42 (Valid). Let S be a Platform State. The validity of S with respect to
Platform P is given by the following predicate:
Valid(P, S) = ∀ W ∈ P.conductors. Valid Conductor(W, S)
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5.9.2 Valid Event Sequences

As discussed in section 5.5, it is important for the BMC to issue commands in the correct
order. Our platform model employs the concept of Initiate and Complete events for this
purpose: These events directly relate to commands the BMC is supposed to issue, and
by placing appropriate restrictions on the sequence of events, our conductor descriptions
can restrict the generated command sequence to a correct sequence.

In this section, we will develop a definition of what constitutes a valid event sequence
based on the Event Graph structure we have introduced in subsection 5.5.5. Let hence
P be a Platform and Events: P.conductors → Event Graph be an assignment of P’s
conductors to Event Graph structures. Let furthermore S be the event sequence whose
validity we wish to determine.

We firstly observe that, depending on the nature of the assigned Event Graphs, Com-
plete(W) and Initiate(W) should not be present in S for all conductors W. More con-
cretely, if the Event Graph of W indicates that the event in question has already taken
place, neither Complete(W) nor Initiate(W) should be appearing in the generated se-
quence. Neither should Initiate(W) occur in S if W’s Event Graph declares it to be an
implicit Initiate event; by definition of Implicit Initiate Events, Initiate(W) is supposed
to identify another, explicit Initiate event. We summarise this observation by introducing
the following two helper functions:

Visible: String × Event Graph → P(Events)

Visible(W, E) =


∅ E.init = Happened

{Complete(W)} E.init.type = Implicit

{Initiate(W), Complete(W)} E.init.type = Explicit

(5.1)

The function global visible applied to a Platform P and an Event Graph assignment
Events returns the union of all visible terms:

global visible: Platform × (Conductor → Event Graph) → P(Events)
global visible(P, Events) =

⋃
W∈P.conductors

Visible(W, Events(W))

With these terms, we can now define when we consider an event sequence S to be correctly
formatted:

Definition 43 (Format). Let P be a Platform, S be an event sequence and Events be
an Event Graph assignment. We define the predicate Format, that decides if S is of the
correct form as follows:

Format(P, Events, S) = S = permutation(global visible(P, Events))

Meaning that the sequence S should be a permutation of the events that should be visible
according to Events
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In order to concisely define a valid predicate on a correctly formatted sequence S, we
are in need of two more helper functions: First of all, Edges, which extracts all edges an
Event Graph defines. This function precisely follows the definitions of the Event Graph
structures, yet replaces the mentions of conductors with the corresponding events.

Edges: String × Event Graph → P(Events × Events)

Edges(W, E) =



⋃
(a,b)∈E.req

{(Complete(a), Initiate(b))} E.init = Happened

(
{(Initiate(W ), Complete(W ))} ∪⋃
bi∈bI

{(Complete(bI), Initiate(W))} ∪⋃
bc∈bC

{(Complete(bc), Complete(W))} ∪⋃
ai∈aI

{(Initiate(W), Initiate(ai))} ∪

⋃
ac∈aC

{(Complete(W), Initiate(ac))}

)
otherwise

(5.2)
Secondly, the function global edges applied to a Platform P and an Event Graph as-
signment Events returns the union of all edges defined by Events :

global edges: Platform × (Conductor → Event Graph) → P(Events × Events)
global edges(P, Events) =

⋃
W∈P.conductors

Edges(W, Events(W))

Last but not least, we are in need of a function that helps us resolve implicit events and
check whether or not our extracted dependency edges are respected. For this purpose, we
resort to sequence indices. The connection between indices and our usual timing notation
is clear: if two events E1 and E2 feature indices i1 and i2 in S with i1 < i2, then T(E1)
< T(E2) and consequently E1 ← E2. We define the function index as follows:

Let Events be an Event assignment, S a correctly formatted event sequence. We define
the function index based on whether the event passed to it is a Complete or an Initiate
event:

index(P, Events, S, Complete(W)) ={
i such that S[i] = Complete(W) if Complete(W) ∈ global visible(P, Events)

−1 otherwise
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index(P, Events, S, Initiate(W)) =
i such that S[i] = Initiate(W) if Initiate(W) ∈ global visible(P, Events)

−1 if Events(W).init = Happened

min({index(P, Events, S, Initiate(e)) | e ∈ Events(W).init.events}) if Events(W).init.sub = First

max({index(P, Events, S, Initiate(e)) | e ∈ Events(W).init.events}) if Events(W).init.sub = Last

Comparing the above definitions to our definition of visible events, it is apparent that we
only assign -1 to an event if said has already happened. Furthermore, as our informal
definitions of Last and First Implicit events dictated, we resolve them to the index of the
last respectively first Initiate Event in their referenced events. Note that this could very
well be an event that has already happened.

With all this preparation in place, we can finally define the valid predicate on event
sequences:

Definition 44 (Valid Seq). Let P be a Platform, S be an event sequence and Events an
event assignment of the form P.conductors → Event Graph. We define the Valid Seq
predicate that decides whether S correctly realises the Event Graphs mapped by Events
as follows:

Valid Seq(P, Events, S) = Format(P, Events, S) ∧(
∀ (a, b) ∈ global edges(P, Events).

index(P, Events, S, a) < index(P, Events, S, b)
)

Note that with this definition, we treat cases where an implicit event Initiate(W) re-
solves to an already happened event conservatively: If Events(W) specifies any other
conductor W2 in the bI attribute, by definition no valid event sequence exists, since -1
≤ index(Complete(W2)) ≮ -1 = index(Initiate(W)). This makes sense; if two events are
classified as already happened, we lack the required information to make any statement
about the sequence in which they happened.

For this reason, it is highly recommended to prevent implicit events from resolving to
already happened events by making use of the information about the initial platform
states: recall that Event Graphs are obtained by passing the initial platform state to the
function seq: Initial State → Event Graph defined by a State Possibility.

5.9.3 Valid Consumer Transitions

We have given each consumer the opportunity to define different power states Pi and tran-
sitions between said. As a reminder, we have included the schematic Reduced Consumer
structure that we have developed in section 5.8:
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Reduced Consumer

P1
description {State Requirement}
of P1

...

Pm
description {State Requirement}
of Pm

trans
power state String × String →
transitions [{State Requirement}]

The attribute trans is a function that takes the names of two power states P1 and P2
and returns an ordered sequence of consumer demands that, if fulfilled in this sequence,
implements the transition from P1 to P2.

As already discussed in our motivation for the Consumer Demand Generation in section
4.2.1, we may not be able to exactly perform the sequence trans(P1, P2). Multiple
consumers might need to transition between power states simultaneously, so we must
generate a sequence that corresponds to a valid interleaving of all transitions. In this
section, we define what valid means in this context.

For the following discussion, we need to define what the subset relation means if applied
to Consumer Demands C1 and C2:

C1 ⊆ C2 ⇐⇒ ∀ req ∈ C1. ∃ req2 ∈ C2. req.id = req2.id ∧ req.state ⊆ req2.state

Which is precisely what we would expect: C1 ⊆ C2 if C1 is more strict than C2, i.e.
whenever Consumer Demands C2 should be fulfilled, it suffices to fulfil C1.

We first define when some sequence of consumer demands correctly implements some
transition:

Definition 45 (Valid trans). Let C be some consumer and P1 and P2 arbitrary power
states defined by C. Let S be a sequence of consumer demands. Then, S correctly imple-
ments trans(P1, P2), which we denote with Valid trans(C, P1, P2, S) if the following
holds:

There exists some strictly increasing sequence of indices i(0) < · · · < i(L-1) such that the
following holds, whereby L = len(trans(P1, P2)):

S[j] ⊆


C.P1 if 0 ≤ j < i(0)

C.P2 if i(L-1) ≤ j < len(S)

trans(P1, P2)[i(x)] if i(x) ≤ j < i(x+1)

(5.3)

Conceptually, the indices i(0) to i(L-1) identify a subsequence I of S that exactly corre-
sponds to trans(P1, P2). With our condition we ensure that no index j that is not in i(0),
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..., i(L-1) jeopardises the transition. Thus, from the perspective of consumer C, there is
no difference between I and S.

With this definition, it follows naturally that an interleaving S of several consumer tran-
sitions is valid if it is valid from the perspective of every consumer C:

Definition 46 (Valid interleaving). Let Trans ∈ P(String × String × String) be a set
of descriptions of consumer transitions, i.e. (C, P1, P2) ∈ Trans means that C should
transition for power state P1 to P2. Then, the sequence of consumer demands S correctly
implements Trans, denoted with Valid interleaving(Trans, S) if the following holds:

∀ (C, P1, P2) ∈ Trans. Valid trans(C, P1, P2, S)

We will make use of these definitions when discussing our Consumer Demands Generation
Mechanism.

5.9.4 Summary

In this section, we have introduced three additional structures that are relevant in con-
text of our model: Platform States, Event Sequences and Consumer Demand Sequences.
For each of these constructs, we have formalised the notion of validity in context of a
specific Platform. We will make use of the resulting predicates in the next chapter that
is dedicated to our mechanisms.
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Chapter 6

Mechanisms

In this chapter, we take a closer look at the mechanisms we need to build on top of our
model. The discussion of each mechanism is structured into three parts:

1. A precise problem definition in context of our platform representation

2. A discussion of the general complexity of the problem

3. An abstract description of the algorithm employed to solve the problem

6.1 SAT

In this chapter, we will perform two different reductions to the Boolean Satisfiability
problem. In this section, we introduce the terms and notation we use to represent such
a SAT problem.

Quite generally, the Boolean Satisfiability problem asks if, given a set of n boolean vari-
ables V = {V0, ..., Vn-1} and a boolean formula F involving these variables, there exists
a truth assignment of V that renders F true.

In the traditional SAT problem, the formula F is in conjunctive normal form, meaning
that F is a conjunction of m clauses F[0], ..., F[m-1]:

F = F [0] ∧ F [1] ∧ · · · ∧ F [m− 1]

Each if these clauses F[i] is a disjunction of len(i) many literals F[i][0], ..., F[i][len(i)-1]:

F [i] = F [i][0] ∨ F [i][1] ∨ · · · ∨ F [i][len(i)− 1]

As already hinted at by the notation, we wish to access individual literals by treating F
like a 2-dimensional array. By definition, every literal corresponds to a single, optionally
negated variable in V. We introduce four helper functions to assess the meaning of each
individual literal or clause:

value: Literal → {0, 1}
Is supposed to return the (integer) truth value the referenced variable should feature to
render the literal True, i.e. 0 if the literal features a negation and 1 otherwise.
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var: Literal → {V 0, . . . , V n− 1}
Returns the name of the variable referenced by the literal.

positive: Clause → P(V)
positive(F[i]) = {var(F[i][j]) | value(F[i][j]) = 1}
Returns the set of all variables that are referenced as positive literals in the given clause

negative: Clause → P(V)
negative(F[i]) = {var(F[i][j]) | value(F[i][j]) = 0}
Returns the set of all variables that are referenced as negative literals in the given clause

We conclude this section with a small example. Consider the following boolean formula
F:

(¬V 0 ∨ V 2) ∧
( V 2 ∨ V 1) ∧
(¬V 0 ∨ ¬V 1)

In this case, var(F[0][1]) returns V2 and value(F[2][0]) evaluates to 0. Furthermore,
negative(F[1]) = {} and positive(F[1]) = {V1, V2}

6.2 State Generation

6.2.1 Problem Definition

In section 4.2.1, we have defined the purpose of the State Generation mechanism as
follows:

The process of determining a new stable platform state (1) that observes the new
consumer demands (2) without violating any input constraints (3).”

We must now establish how this goal, and in particular the three terms in bold, relate to
our platform model:

When defining the nature of consumer descriptions in section 5.7, we have already dis-
cussed our model’s representation of consumer demands: In accordance with the assump-
tions made in section 4.1, we declared consumer demands to be simplistic enough to be
expressed by a set of State Requirements. Therefore, our State Generation mechanism
expects to receive consumer demands C ∈ P(State Requirements).

In section 5.9.1, we have formalised the meaning of terms (1) and (3): We have defined
a Platform State to be an assignment of Conductor States to conductors defined by the
platform. We have furthermore developed a Valid predicate for a Platform State that
indicates if said observes all input constraints.
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We can therefore formally express the purpose of the State Generation mechanisms as
follows:

Definition 47 (State Generation Problem). Given a Platform P and consumer demands
C ∈ P(State Requirements), the State Generation mechanism either returns a Platform
State S with the following property:

Valid(P, S) ∧

( ∧
req ∈ C

S(req.id) ∈ req.state

)
or outputs None if no such Platform State S exists.

There is, however, another term our State Generation Mechanism should ideally return:
We recall that the Valid Conductor predicate we defined in section 42 is based on the
existence of a suitable State Possibility. Therefore, any mechanism that constructs a valid
Platform State S must in some way or another decide which State Possibilities Poss the
Platform State S adheres to. It makes sense for our Sequence Generation mechanism
to explicitly return Poss for the following two reasons: Firstly, our model integrates the
information required by the Sequence Generation into individual State Possibilities. Thus,
if not made explicit, the Sequence Generation mechanism would need to recompute Poss.
Secondly, it makes the reasoning about correctness of the reduction and the algorithm
presented in the next section easier and more readable.

We therefore require the State Generation Mechanism to also return a function Poss:
P.conductors → State Possibility that assigns to every conductor a State Possibility the
constructed Platform State S adheres to. Note that the following property holds:

∀ S, P. Valid(P, S) ⇐⇒

∃ Poss.
(
∀ W ∈ P.conductors. Poss(W) ∈ P.W.poss ∧ Valid Poss(S, Poss(W), W)

)
Because of this, we can arrive at the following, equivalent formulation of the State Gen-
eration problem:

Definition 48 (State Generation Problem). Given a Platform P and consumer demands
C ∈ P(State Requirements), the State Generation mechanism either returns (S, Poss)
with the following properties:

S is a Platform State
Poss is a function P.conductors → State Possibility and the following holds:

(∀ W ∈ P.conductors. Poss(W) ∈ P.W.poss ∧ Valid Poss(S, Poss(W), W))

∧

( ∧
req ∈ C

S(req.id) ∈ req.state

)

or outputs None if no such Platform State S exists.
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In the following subsections, we will always refer to the second formulation of the State
Generation Problem. Note that from a solution for our first problem formulation, the
function Poss required by the second problem formulation can be computed in polynomial
time. According to the analysis provided in the next section, the two formulations are
therefore also equivalent in terms of computational complexity.

6.2.2 Problem Complexity

We claim that the State Generation problem is NP-hard. We will prove this claim with a
reduction of the SAT problem to the State Generation Problem. For the sake of simplicity,
we will abbreviate the State Generation Problem as SG in the following discussion.

Let (V, F) be an arbitrary instance of the SAT problem as defined in section 6.1 and let
B be any algorithm that solves the SG problem. We are going to efficiently construct a
Platform Plat and a set of consumer demands C such that the following relation between
the return value of B called on (Plat, C) and our SAT problem instance exists:

B(Plat, C) =

{
(S, Poss) if SAT(V, F) = True

None if SAT(V, F) = False
(6.1)

Schematically, the Platform Plat we are going to model has the following format:

Figure 6.1: A schematic representation of Plat

All of Plat’s conductors are transmitting logical signals. As the names given to the
conductors imply, conductors V0 to Vn-1 will be symbolising the variables V of our SAT
problem and conductors F[0] to F[m-1] the clauses of our boolean formula F.
The Producer P defines specific State Possibilities that capture the nature of the corre-
sponding clause. More specifically, in the description of each of its outputs F[i], P defines
a State Possibility for every literal in clause F[i] as follows:
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state {1}

req
id var(F[i][j])
state {value(F[i][j])}

Table 6.1: The j-th State Possibility P defines for its output F[i]

As their names imply, the Dummy Consumer simply serves as a point of connections for
the outputs generated by P whereas the Dummy Producers generates the logical signals
on V0 to Vn-1 without imposing any restrictions on said.

The corresponding Platform will thus be of the following format:

Plat [Reduced Platform]
conductors {V0, ..., Vn-1, F[0], ..., F[m-1]}
V0 poss state {0, 1}

...
Vn-1 poss state {0, 1}

F[0] poss

state {1}

req
id var(F[0][0])
state {value(F[0][0])}

...
state {1}

req
id var(F[0][len(0)-1])
state {value(F[0][len(0)-1])}

...

F[m-1] poss

state {1}

req
id var(F[m-1][0])
state {value(F[m-1][0])}

...
state {1}

req
id var(F[m-1][len(m-1)-1])
state {value(F[m-1][len(m-1)-1])}

Table 6.2: The Platform Plat, any irrelevant attributes have been omitted

Clearly, this construction can be performed in polynomial time of the number n of vari-
ables in V and the number of literals q =

∑m−1
i=0 len(i) in F: our Platform defines n + m

many Conductors with a total of q + n many State Possibilities, each of which can be
computed in constant time.

Now we just need to specify our consumer demands C, which we will set to ∅.

We now need to show that the desired correspondence defined above (equation 6.1) holds.
To do so, we show that every solution (S, Poss) to SG(Plat, C) exactly corresponds to a
truth assignment A of V that satisfies F. This implies that our algorithm B only returns
None iff the formula F is not satisfiable, as required.
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Let therefore (S, Poss) be a solution to SG(Plat, C). Let A be constructed as follows:

∀ v ∈ V. A(v) = S(v)

We claim that A is a truth assignment of V that satisfies formula F. We prove this
by showing that in every clause of F at least one literal evaluates to 1 under A. Let
therefore F[j] be an arbitrary clause of F. According to the definition of Poss, Poss(F[j])
∈ P.F[j].poss. Without loss of generality, let Poss(F[j]) be the i-th State Possibility of
conductor F[j]. According to our construction, Poss(F[j]) is therefore of the following
format:

state {1}

req
id var(F[j][i])
state {value(F[j][i])}

Since furthermore Valid Poss(S, Poss(F[j]), F[j]) must hold, it follows that in particular:

S(var(F[j][i])) ∈ {value(F[j][i]} ⇐⇒ S(var(F[j][i])) = value(F[j][i])

It follows that A(var(F[j][i])) = value(F[j][i]), which by definition of the value function
renders literal F[j][i] and thus clause F[j] true. Since F[j] was an arbitrary clause of F, it
follows that indeed A satisfies formula F.

The other direction of the correspondence is very similar to the first, which is why we
take the liberty to omit it. This concludes our discussion of the reduction of SAT to SG.
Since SAT is known to be NP-hard, it follows that our Sequence Generation problem is
NP-hard too.

6.2.3 Algorithm

The algorithm we propose to solve the State Generation problem is work-list and back-
tracking based: The algorithm operates with the following variables:

� S, a mapping P.conductors → State Space. S represents a more general version of
a Platform State since it assigns State Spaces rather than individual Conductor
States. At the end of the execution, we will construct the Platform State we are
required to return from S.

� Poss, the function P.conductors→ State Possibility the state mechanism is required
to return.

� Desired States ∈ P(StateRequirement), which at any point during the execution
will contain the State Requirements that we have not yet enforced in S.

� Choices, a stack where we store every option O that we have not yet pursued along
with the execution states of S, Poss and Desired States we need to revert to in order
to pursue O. These options correspond to State Possibilities of conductors.
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Initialisation

We initialise our variables as follows:

S ← (P.conductors → {None})
Poss ← (P.conductors → {None})
Choices ← ⊥
Desired States ← C

Thus, both S and Poss initially map every conductor to some placeholder value None,
Choices is initialised with an empty stack and Desired States with the given consumer
demands C.

Procedure

With variable Desired States holding all State Requirements that still need to be enforced,
the termination of our procedure is naturally given by Desired States becoming empty.

While Desired States 6= ∅:
1: req ← Desired States.pop()

conductor ← req.id
state ← req.state

If S(conductor) is None:
Let Options be the set of State Possibilities of conductor that agree with state, i.e.:

2: Options ← {p | p ∈ P.conductor.poss ∧ p.state ∩ state 6= ∅ }

If Options is empty:
Pop from Choices and revert

3: Else:
4: p ← Options.pop()
5: Push remainder of Options and current execution state onto Choices

Poss(conductor) ← p
6: S(conductor) ← p.state ∩ state
7: Desired States ← Desired States ∪ p.req

Else:
8: If S(conductor) agrees with state, i.e. S(conductor) ∩ state 6= ∅:
9: S(conductor) ← S(conductor) ∩ state

Else:
Pop from Choices and revert Return (S, Poss)

If the procedure attempts to pop from Choices but finds the stack empty, it will terminate
and return None.
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Complete consumer demands

For the procedure described above to solve the State Generation problem correctly, we
need to make an additional assumption about the nature of the consumer demands passed
to it. Consider for instance the following Platform:

Figure 6.2: An illustration for the need of complete consumer demands

If the demands of consumer C were to only reference conductor W1, the above procedure
would not choose a State Possibility for W2 and thus not assign any State Space to
S(W2). We are therefore required to make the following assumption:

Assumption 49. The consumer demands passed to our State Generation procedure
are sufficiently complete, meaning that either the procedure returns None or returns a
complete State Space assignment S, meaning that: ∀ W ∈ P.conductors. S(W) 6= None

In our implementation, this assumption can be enforced by setting the flag extend to
True, see section 8.2.4

Correctness

We firstly consider the correctness of the procedure for the case in which it does not
terminate with None. We wish to argue that in this case, a valid solution to the State
Generation problem as defined by definition 48 is given by (S’, Poss), whereby S’ is
constructed by assigning each conductor W an arbitrary element of S(W), and thus the
following property holds:

∀ W ∈ P.conductors . S’(W) ∈ S(W)

For this purpose, we proceed as follows: We firstly argue that such a construction of S’
is possible, meaning that for all W, S(W) is not empty. Because of our assumption that
for every conductor W, we perform at least one assignment to S(W) (assumption 49), it
suffices to show that our procedure only ever assigns non-empty sets to S.
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This is easy to see: the only assignments to S are performed on lines 6 and 9, and we
ensure that the value we assign does not correspond to an empty set with checks on lines
2 and 8 respectively.

In order to continue our correctness argument, we need to make some assumption about
the correctness of the revert mechanism, since we have not explicitly defined said in our
procedure (deliberately, as it is not very interesting): We assume that our revert mecha-
nism is implemented in a manner that the result any execution of the above procedure,
no matter how unlucky, is equivalent to the result of an execution where we had an oracle
that picked optimal state possibilities p (on line 4) for us and prevented us from needing
to revert.

With this assumption, we are allowed to only consider such an optimal, oracle-guided
execution, which we will do from now on.

We claim that every iteration of our while loop causes S to be refined. Looking at the
control flow in our loop iterations, we see that the executions always ends up in the
else-branch of the outermost IF statement if we have already assigned a State Space
to S(conductor) in a previous iteration. In said branch, the value of the assignment
to S(conductor) is S(conductor) ∩ state, and thus constitutes a refinement. This claim
directly implies that no loop iteration ever undoes the work of a previous iteration. Fur-
thermore, the fact that our refinement operator is the set intersection and therefore asso-
ciative implies that the sequence in which we iterate over the elements in Desired States
does not matter.

Furthermore, every loop iteration succeeds in enforcing the State Requirement req that
it has popped from the set of Desired States on line 1. Since we consider an oracle-
guided execution that never reverts, we find that on every execution path there is an
assignment to S(conductor) ≡ S(req.id) of a value that is an intersection between some
other State Space and state ≡ req.state. Together with the previous observation, this
implies that once the procedure terminates, all State Requirements that have ever been
in Desired States have been successfully enforced on S.

With this observation, we can conclude that:( ∧
req ∈ C

S(req.id) ⊆ req.state

)

and consequently that our constructed Platform State S’ observes the second property
required by solutions to the State Generation Mechanism (Definition 48).What remains
is to show the first property:

Since we assume that for every conductor W, S(W) has been assigned to at least once, it
follows that we have executed the first Else-branch beginning on line 3 for every conductor
W. Since we assume that we never had to revert, the State Possibility p chosen on line 4
corresponds to the value of Poss(W) at the end of the execution. It thus holds that for
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every W, Poss(W) ∈ P.W.poss and S(W) ⊆ Poss(W).state. We furthermore add all of
p’s State Requirements to Desired States on line 7, and with the refinement observations
above this implies the first property defined by the State Generation Problem:

∀ W ∈ P.conductors. Poss(W) ∈ P.W.poss ∧ Valid Poss(S’, Poss(W), W)

We still need to argue that our procedure will only return None if no suitable Platform
State exists. With our backtracking mechanism and the observation that the sequence in
which we attempt to enforce State Requirements does not matter, our procedure performs
an exhaustive search and should hence find a viable solution if one exists.

6.2.4 Finding all solutions

Note that with the backtracking state the above procedure keeps, we can easily modify it
to return all possible combinations of State Possibilities. For this we simply store every
solution the procedure returns and call it anew with its variables instantiated as given
by the last execution state stored on Choices.

6.3 Sequence Generation

6.3.1 Problem Definition

We once more recall the initial problem definition we gave in our objectives section:

Generating the sequence of BMC actions that will have the platform transition from the
current stable state to the new stable platform state.

In our model, we have used Initiate and Complete events to reason about this sequence
of actions. As discussed in section 5.5.6, an Initiate(W) event directly corresponds to
issuing the Command Action of the associated conductor’s set attribute. Similarly, a
Complete(W) event corresponds to a synchronisation action involving the monitor func-
tionalities W defines in its mon attribute. Because of this close correspondence between
BMC actions and events, we will slightly reduce the above goal to only require the con-
struction of a sequence of events. This makes our complexity argument in the next
section a bit more intuitive.

Furthermore, since we had our State Generation mechanism collect the State Possibil-
ities Poss from which we can directly extract our seq attributes and thus our Event
Graph structures, our problem definition will make use of Poss. However, for the sake of
simplicity, we take the liberty of pre-processing Poss in the following fashion:

We recall that attribute seq is of the form Initial State → Event Graph. Let P be our
Platform and S’ the current Stable State as defined in the above problem description.
We construct a new function Events as follows:
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Events: P.conductors → Event Graph
∀ W ∈ P.conductors. Events(W) = Poss(W).seq(S’)

Recalling the Valid Seq predicate (definition 44) we have developed in section 5.9.2, we
arrive at the following problem definition:

Definition 50 (Sequence Generation). Given a Platform P and a function Events of the
form P.conductors → Event Graph, the Sequence Generation mechanism either returns
an event sequence Seq such that:

Valid Seq(P, Events, Seq)

or None if no such sequence exists.

6.3.2 Complexity

We claim that the Sequence generation is NP-hard. We will argue this point by informally
sketching a reduction of the SAT problem to the Sequence Generation Problem.

Let (V, F) be an arbitrary instance of the SAT problem. Let B be any algorithm that
solves the Sequence Generation problem. We thus need to efficiently construct an appro-
priate function Events to serve as input to B, such that B’s output gives an indication
about the satisfiability of (V, F). Similar to the State Generation reduction, for our
construction of Events this indication will be the following:

B(Events) =

{
Seq if SAT(V, F) = True

None if SAT(V, F) = False
(6.2)

We construct our Events function in such a fashion that if B succeeds and returns an
event sequence Seq, this sequence corresponds to a truth assignment to V that satisfies
formula F. Conceptually, this correspondence is of the following nature: Every variable
in V is represented by a conductor. Additionally, there is a reference conductor E. Which
value Seq assigns to some variable Vj, denoted as Seq(Vj), is indicated by the timing
relation the change to conductor E has with respect to Initiate(Vj):

Seq(Vj) =


1 if Initiate(Vj) ← Initiate(E)

0 if Complete(E) ← Initiate(Vj)

x otherwise

(6.3)

Whereby x indicates that assigning either value to Vj will render the formula F true.
Note that the cases Initiate(Vj) ← Initiate(E) and Complete(E) ← Initiate(Vj) are in-
deed disjoint: because of the natural relation Initiate(E) ← Complete(E), if both cases
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were true simultaneously, we would arrive at a cyclic graph (see figure 6.3), which is a
contradiction since we have defined event relations to be strict.

Figure 6.3: The resulting cyclic graph if we happened to be in the first two cases of the definition of
Seq(Vj) simultaneously

To visualise this situation, we will represent the change of the conductor C on a time line
as follows:

Figure 6.4: Schematic illustration of a conductor change

In the following figure, the colour and pattern of each conductor’s change is representative
of its implied truth assignment: red and striped for 0, green and dotted for 1 and brown
and grid pattern for x. The exception is of course our reference conductor E in blue,
which we have shifted slightly down to show the exact timing relations of conductors V4,
V5 and E:

Figure 6.5: An illustration of the correspondence between truth assignments and timing relations to
Change(E)

Before we discuss the construction of Events, we wish to make a (trivial) observation
about how a truth assignment A can render a clause F[j] in F true. There are two
possibilities for A to accomplish this:
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1. A assigns value 1 to a variable in positive(F[j])

2. A assigns value 0 to a variable in negative(F[j])

Figure 6.6: The two options that render clause F[j] true

With this in mind, we can now consider the construction of Events: Events is supposed
to be a mapping of conductors to Event Graph structures. The conductors we need to
represent our SAT(V, F) problem are the following:

� E, our reference conductor

� A conductor Vj for every variable Vj ∈ V.

� A conductor F[j] TRUE for every clause F[j] in F. The Event Graph of this con-
ductor will enforce possibility (1) as discussed in list 6.6, i.e. it will enforce that for
some variable Vi in positive(F[j]), Initiate(Vi) ← Initiate(E).

� A conductor F[j] False for every clause F[j] in F. The Event Graph of this conduc-
tor will enforce possibility (2) discussed in list 6.6, i.e. it will enforce that for some
variable Vi in negative(F[j]), Complete(E) ← Initiate(Vi).

� A conductor D[j] for every clause F[j] in F. With the two conductors F[j] TRUE
and F[j] FALSE we will be enforcing both possibilities listed in list 6.6, despite one
of the two being sufficient to render F[j] true. To remedy this, we add D[j] as a
fresh variable and conceptually augment clause F[j] with the two literals D[j] and
¬ D[j].

With this rough idea of the different conductors and their purpose in mind, we define
Events as shown in table 6.3. Quite obviously, this construction can be realised in poly-
nomial time of the number of variables n and the number of clauses m.

Note that apart from the natural relation of Initiate(W) ← Complete(W) that holds for
every conductor W, only the event graphs of F[i] True and F[i] False conductors specify
additional event relations. We now wish to establish an informal argument that these
indeed accomplish possibilities (1) and (2) (defined in list 6.6) respectively as we claimed
above.

Consider the Event Graph of conductor F[j] True. Initiate(F[j] True) is defined as an
implicit event of type First on the set of events S = (positive(F[j]) ∪ {D[j]}). Let W be
the conductor ∈ S whose Initiate event Initiate(W) is the first to happen. According to
the definition of a First implicit event that we have given in section 5.5.6, it follows that
Initiate(F[j] True) = Initiate(W). The event graph of F[j] True furthermore defines the
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Events [Conductors → Event Graph]

E → init type Explicit

V0 → init type Explicit

...

Vn-1 → init type Explicit

D[0] → init type Explicit

...

D[m-1] → init type Explicit

F[0] True → init
type Implicit
sub First
events positive(F[0]) ∪ {D[0]}

aI {E}

F[0] False → init
type Implicit
sub Last
events negative(F[0]) ∪ {D[0]}

bI {E}
...

F[m-1] True → init
type Implicit
sub First
events positive(F[m-1]) ∪ {D[m-1]}

aI {E}

F[m-1] False → init
type Implicit
sub Last
events negative(F[m-1]) ∪ {D[m-1]}

bI {E}

Table 6.3: Events function, any irrelevant attributes have been omitted
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after Initiate (aI) attribute to be {E}. According to the definition of said, this enforces
the relation Initiate(F[j] True) = Initiate(W)← Initiate(E). Since Initiate(W) is the first
Initiate event to happen, this does not imply anything about the relation of the other
Initiate events of conductors in S. Thus, Initiate(W)← Initiate(E) is equivalent to saying:
The Initiate event of at least one conductor in S must happen before Initiate(E), which
corresponds exactly to our claim above.

The argumentation for the F[j] False event proceeds in a very similar fashion, which is
why we omit it for the sake of brevity. Since SAT(V, F) is known to be NP-hard, this
informal reduction implies that the Sequence Generation mechanism is NP-hard as well.

6.3.3 Approximation

The Sequence Generation problem being NP-hard is not ideal. As we will see in later sec-
tions, an NP-hard problem does by no means imply that we cannot solve some instances
reasonably efficiently. However, recalling the fact that our Sequence Generation mecha-
nism might fail, we could very well end up calling it on potentially exponentially many
solutions our State Generation mechanism is digging up. We will thus not attempt to
provide an algorithm that is capable of solving the general Sequence Generation problem.
Instead, we propose an approximation of the Sequence Problem in this section, which can
be solved in polynomial time.

What makes the general Sequence Generation problem hard is the handling of Implicit
events, namely deciding which event will be the first or last to occur. This is precisely
what we exploited when reducing SAT to the Sequence Generation problem in the last
section. It should be noted that the instance we constructed to solve the SAT problem
was a special case itself, since we had no Implicit events referencing other Implicit events.

The approximation we propose avoids these decisions about Implicit Events by stretching
our concept of events a bit. Consider an arbitrary implicit event I of the following format:

I [Initiate Event]
type Implicit
sub sub
events E

Table 6.4: A symbolic Initiate Event instance

Rather than identifying a single command as the definition of Initiate Events suggests
(see definition 35), we approximate the Implicit Event I by resolving it to all events refer-
enced by E. Time-wise, this approximation of I corresponds to an interval that stretches
from T(First(E)) to T(Last(E)). Quite naturally, relations to other events would then be
defined as follows:

Let A be an event that is supposed to happen before and B an event that is supposed to
happen after I. Then the following must hold:
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T(A) < T(First(E)) ≤ T(Last(E)) < T(B)

With these relations, we are no longer required to explicitly decide on which event will
be the first or last to happen; we only need to ensure that event A happens before all
events referenced in E and event B happens after all events referenced in E. In our graph
representation and with E = {E1, ..., En} we can represent this as depicted in figure 6.7.

Figure 6.7: Graph representation of our approximation of the Implicit Event I

Considering our original definition of I as either Last(E) or First(E), depending on the
attribute sub, it is obvious that our approximation is sound with respect to both options:

T(A) < T(First(E)) ≤ T(Last(E)) < T(B) implies both T(A) < T(First(E)) < T(B) as
would be required if sub = First and T(A) < T(Last(E)) < T(B) as required by sub =
Last. The soundness of our approximation is important, otherwise we could no longer
guarantee the correct construction of event sequences.

We still need to discuss how we can resolve nested implicit events. Consider thus the
case where E references another implicit event I’. With our approximation being defined
as all events referenced by E, it is clear that the following equivalence holds, whereby we
have denoted the fact that we refer to our approximation of implicit event I by setting
the attribute sub to ”Approximation”:

I [Initiate Event]
type Implicit
sub Approximation
events E

=

I [Initiate Event]
type Implicit
sub Approximation
events (E \ {I’}) ∪ I’.events

Table 6.5: Two equivalent approximate Initiate Event instances
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To argue this more formally, we could make use of our time-based definition and would
thus need to show that:
First(E) = First((E \ I’) ∪ I’.events) and Last(E) = Last((E \ {I’}) ∪ I’.events)

This is quite easily done, recalling how we defined our index function in section 5.9.2
and the fact that for both min and max, it holds that:

min(A ∪ B) = min({min(A), min(B)})

For the sake of brevity, we omit this formal argumentation. From now on, we will view
all Implicit events as approximations. Based on our claim above, we define a function
Resolve. Given a conductor W and an Events assignment, this function returns the set
of events E that Initiate(W) resolves to, whereby E is only allowed to contain already
happened or Explicit Initiate events:

Resolve: String × (P.conductors → Event Graph) → P(Events)

Resolve(W, Events) =
{Initiate(W)} if Events(W).init = Happened

{Initiate(W)} if Events(W).init.type = Explicit⋃
E ∈ Events(W).init.events

Resolve(E, Events) otherwise

6.3.4 Algorithm

In this section, we sketch an algorithm that solves the Sequence Generation with approx-
imated Implicit Events as defined in the last section. We split our discussion into three
parts: the resolving of Initiate Events, the construction of the global event graph and the
generation of the event sequence. Let therefore (Events) be an arbitrary instance of the
Sequence Generation problem as defined by definition 50.

Resolving Initiate Events Unfortunately, due to potentially cyclic references, we
cannot resolve our implicit event in the same recursive manner as the definition of the
Resolve function we have given in the last section. Instead, we need to compute a fixed
point. In order to ensure that our algorithm runs in polynomial time, we proceed as
follows:

We construct an Initiate Event Graph. As already implied by the name, the nodes of this
graph correspond to Initiate Events: for every conductor W on the platform, there is a
node Initiate(W) in our graph. We then insert directed edges as follows:

Initiate(A)→ Initiate(B) ⇐⇒ Events(A).init.type = Implicit ∧ B ∈ Events(A).init.events

There is the following correspondence between this Initiate Event Graph and our Resolve
function: Resolve(W) is equal to all nodes reachable from node Initiate(W) that corre-
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spond to explicit or already happened events. Thus, we can compute Resolve(W) for
every conductor W as follows:

� Compute the transitive closure R of our Initiate Event Graph, which can be done
in polynomial time, for instance using the Floyd-Warshall algorithm.

� For all Initiate(W2) such that (Initiate(W), Initiate(W2)) ∈ R, add Initiate(W2)
to Resolve(W) if Events(W2).init = Happened or Events(W2).init.type = Explicit.
This can also be done in polynomial time, since the number of edges in our transitive
closure is polynomial in the number of conductors.

Constructing the global Event Graph The nodes of our global event graph G
correspond to Initiate(W) and Complete(W) for all conductors, with the exception of
Initiate(W) for any W whose event graph Events(W) defines an implicit Initiate Event.
In other words, we include all visible events as well as all already happened events as
defined in section 5.9.2.

We add all edges to G that are returned by the function Edges, which was also defined
in the aforementioned section. However, we modify Edges such that every reference
to Initiate(W) is replaced by the set Resolve(W). The resulting definition of Edges is
therefore as follows:

Edges: String × Event Graph → P(Events × Events)

Edges(W, E) =

⋃
(a,b)∈E.req

{(Complete(a), Initiate(b’)) | b’ ∈ Resolve(b)} E.init = Happened

(
{(Initiate(W’), Complete(W)) | W’ ∈ Resolve(W)} ∪⋃
bi∈bI

{(Complete(bI), Initiate(W’)) | W’ ∈ Resolve(W)} ∪⋃
bc∈bC

{(Complete(bc), Complete(W))} ∪⋃
ai∈aI

{(Initiate(W’), Initiate(ai’)) | W’ ∈ Resolve(W), ai’ ∈ Resolve(ai)} ∪

⋃
ac∈aC

{(Complete(W), Initiate(ac’)) | ac’ ∈ Resolve(ac)}

)
otherwise

(6.4)

Remark. Note that we are, in a sense, performing an inverse of the process we devised
when defining the validity of a sequence S: If the sequence is provided to us, it suffices to
resolve all events to sequence indices and to then look at the edges defined by the original
event graphs to see if all timing requirements are upheld. Now that we are supposed to
construct a valid sequence, we need to correctly generate a global event graph to then
determine appropriate an appropriate sequence index for every event.
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From the above definition, it is clear that the edges obtained by Edges(W, E) for all
conductors W only reference nodes that exist in our global event graph. Before proceeding
to the last step, we need to appropriately handle already happened events. Recalling that
our index function assigns the smallest value, namely -1, to all already happened events,
it follows that any already happened event E must not feature any outgoing edges for the
constructed event sequence to be valid. We thus perform the following actions:

For every already happened event E:
If @ event E’ such that edge (E, E’) is in G:

Remove node E and all adjacent edges from G
Else:

Terminate and return None.

Event Sequence Generation We claim that the global event graph G contains all
event relations specified by Events. Therefore, we can obtain a correct event sequence S
as follows:

If G is acyclic:
S = topological sort(G)
return reverse(S)

Else:
return None

Note that due to our removal of all already happened events from G, the returned sequence
reverse(S) indeed observes Format(Events, S), which corresponds to the first condition of
Valid(Events, S). We do not provide a proof for the second condition.

6.4 Consumer Demand Generation

6.4.1 Problem Definition

As always, we recall the informal problem definition of the problem that we have given
in section 4.2.1:

Generate a feasible interleaving of all consumer transitions that are requested simulta-
neously.

We have already discussed the correctness of such an interleaving in section 5.9.3. We
thus merely need to discuss what feasible is supposed to mean in this context. This is
quite straightforward: As we have seen in the last sections, problem instances exist for
both the State and Sequence Generation mechanism that result in None being returned
since no valid solutions exist. Feasible thus means all the problem instances generated
by the interleaving have valid solutions.
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We thus arrive at the following definition, whereby as in definition 46, every element (C,
P1, P2) in Trans denotes that consumer C should transition from its power state P1 to
P2:

Definition 51 (Consumer Demand Generation problem). Given a Platform P and a set
of transition descriptions Trans ∈ P(String × String × String), the Consumer Demand
Generation mechanism either returns a feasible sequence of consumer demands S such
that

Valid interleaving(Trans, S)

Or returns None if no such sequence S exists.

6.4.2 Complexity

The question of complexity is quickly answered for the Consumer Demand Generation
Problem; the feasibility of an interleaving depends on the feasibility of the resulting
State and Sequence Generation problem instances. Recalling that all our reductions to
SAT were exactly based on said feasibility question (since SAT, in contrast to State and
Sequence Generation is a pure decision problem), it is obvious that Consumer Demand
Generation must be NP-hard too.

6.4.3 Algorithm

In this section, we sketch an algorithm for the Consumer Demand Generation problem.
We put the focus of this sketch on the exploration of the different interleavings. Therefore,
we will abstract determining the feasibility of an individual sequence step with a predicate
Feasible, since that just involves making the appropriate calls to State and Sequence
Generation mechanisms and checking the result for None.

Let thus (P, Trans) be an arbitrary Consumer Demand Generation problem. In order to
efficiently perform the aforementioned exploration of interleavings, we use an approach
based on dynamic programming (DP). We construct the usual DP-table DP as follows:

Our table will feature a dimension for every transition in Trans. Let (C(i), P1(i), P2(i))
be the i-the element of Trans. The i-th dimension of our table will have the following
character:

Let T(i) be the sequence of consumer demands defined by C(i).trans(P1(i), P2(i)). We
define an augmented sequence T’(i) to be

T’(i) = C(i).P1(i) + T(i) + C(i).P2(i),

meaning that we add the consumer demands for the initial power state P1(i) to the
beginning and for P2(i) to the end of T(i). The i-th dimension will feature a row for
every element in T’(i).
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For Trans = {(CPU, Off, On), (FPGA, Off, On)} and with the abbreviations CPU.trans(Off,
On) = {CPU1, ..., CPUn} and FPGA.trans(Off, On) = {FPGA1, ..., FPGAm}, our table
might look as follows:

CPU.Off CPU1 ... CPUn CPU.On
FPGA.Off
FPGA1

...
FPGAm
FPGA.On

Table 6.6: An example DP table

Conceptually, the element at index (i(0), ..., i(len(Trans) -1)) of our table thus represents
the union of consumer demands associated with the corresponding rows :

len(Trans) - 1⋃
j = 0

T’(j)[i(j)]

Thus, DP[0, ..., 0] corresponds to a consumer demand that enforces a platform state
before the transitions in Trans are executed and where every consumer is still in its
initial state P1. Similarly, the last element of DP enforces a platform state after Trans
where every consumer has attained power state P2.

In the context of table DP, Consumer Demand Generation boils down to finding a valid
and feasible path through the table from index (0, ..., 0) to the last element at index
(len(T’(0)) - 1, ..., len(T’(len(Trans) - 1) - 1)). A valid path is thereby defined as follows:

Definition 52 (Valid Path). Let P be a sequence of elements in DP at indices I(0), ...,
I(m). We consider P to be valid if:

∀ j ∈ {0, ..., m-1}. I(j+1) - I(j) ∈ ({0, 1}len(Trans) \ {0}len(Trans))

In other words, with every step we take through our table, the index of dimension d must
either increase by one or remain the same. Of all dimensions, the index of at least one
should increase (otherwise we would remain at the same index).

Note that there is an exact correspondence between a valid path through our table and
the Valid trans predicate we defined in definition 45: The indices i whose existence the
predicate demands can be extracted from a valid path as follows: Consider the j-th
transition in Trans and a valid path through the table with indices I(0), ..., I(m). Then,
index i(x) as defined in definition 45 can be computed as follows:

Since our valid path starts at (0, .., 0) and ends at the last element of DP, it follows
that I(0)[j] = 0 and I(0)[j] = len(T’(j)) - 1. By definition of a valid path, the indices of
dimension j must either increase by one or remain the same in every step of the sequence
I(0)[j], ..., I(m)[j]. Thus, there must especially exist a y ∈ {0, ..., m - 1} such that I(y)[j]
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= x and I(y+1)[j] = x + 1. According to our construction of T’, the x-th transition
step of trans(C(j), P1(j), P2(j)) corresponds T’[x+1], and thus i(x) corresponds to index
(y+1) of the valid path.

Using our DP-table, we construct such a valid path incrementally, by storing in each table
entry information on whether we have already discovered a prefix of a valid path that
ends at the corresponding entry. We traverse the table in a multi-dimensional equivalent
of row or column-major order and when considering the entry at some index I, we update
our table as follows:

If DB[I] indicates that a prefix of a valid path ending there was found:
For every δ ∈ ({0, 1}len(Trans) \ {0}len(Trans)):

If Feasible(Step from DB[I] to DB[I + δ]):
Update DB[I + δ] accordingly

If the last entry of DP indicates that we have found a valid path ending there, we find
the corresponding path by backtracking through the table using the information stored in
every entry and return the corresponding consumer demand sequence. If not, we return
None.

Note that due to the Sequence Generation Mechanism depending on the initial platform
state (see the construction of Events in section 50), a general Consumer Demand Gen-
eration mechanism will need to keep track of the precise Platform State we reached in
every table entry. See section 8 for description of how our implementation circumvents
this.

The described DP mechanism can thus find a valid and feasible interleaving in time
proportional to the dimensions of table DP, the state stored in every entry of DP and
the time it takes to evaluate the Feasible predicate.

6.5 Summary

In this chapter, we have discussed the three mechanisms that need to be built on top of our
platform model to generate correct static management actions. We have realised that all
of the general problems our mechanisms are required to solve are NP-hard. In the case of
State and Consumer Demand Generation, we have presented an algorithm that solves this
general problem. For Sequence Generation, we have simplified our problem formulation
to yield an approximation of the general solution that can be found in polynomial-time.
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Chapter 7

Modelling the Enzian

7.1 Overview

As already mentioned in section 2.2, the Enzian platform features a server-class ThunderX
CPU and as well as a high-end FPGA. As one would expect, the platform supporting
these agents is not entirely trivial. Figure 7.1 depicts the components and conductors of
the Enzian platform as drawn by the Graphviz graph visualisation software. For the sake
of simplicity, purely monitoring-based connections are not shown.

EN psu_cpu0 OUT

EN main_psu

V5_PSU

V33_PSU

V5SB_PSU

BMC_VCC_3V3

EN psu_cpu1 OUT

        

        

        

        

        

        

EN_VTT

VID

EN_PWR

VCC

U26 VOUT

EN_VTT

VID

EN_PWR

VCC

U30 VOUT

VIN

BUS

EN

EN_2

VCC

U34

VOUT

VOUT_2

BUS

V_PWR

EN

IC4 V_OUT

CHIP_RESET_L

VDD

VDD_2V5_DDR24

VDD_15

VTT_DDR13

PLL_REF_CLK

VDD_09

VDD_DDR13

VTT_DDR24

VDD_2V5_DDR13

VDD_IO33

PLL_DC_OK

VDD_DDR24

cpuV_IN

V_EN
IC15 V_OUT

VDD oscillator CLK

VDD

CLK_IN
U16 CLK

VDD

CLK_IN
U11 CLK

V_IN

V_EN
IC16 V_OUT

VS U27

VS U31

VDD

CLK_IN
U57 CLK

EN_VTT

VID

EN_PWR

VCC

U43 VOUT

EN_VTT

VID

EN_PWR

VCC

U47 VOUT

VCC_IN

VCC

U20

OUT6

OUT10

OUT11

OUT12

OUT9

OUT8

OUT7

VCC_IN

VCC

U35

OUT19

OUT6

OUT14

OUT16

OUT18

OUT10

OUT11

OUT12

OUT9

OUT17

OUT8

OUT7

OUT13

OUT15

BUS

V_PWR

EN

IC11 V_OUT

BUS

VR_ON

VDD33

VDDH

U41 V_OUT

BUS

V_PWR

EN

IC13 V_OUT

BUS

VR_ON

VDD33

VDDH

U37 V_OUT

BUS

V_PWR

EN

IC10 V_OUT

BUS

V_PWR

EN

IC12 V_OUT

BUS

VR_ON

VDD33

VDDH

U51 V_OUT

        

        

       

       

       

        

       

VCCO_VCC_DDR24

MGTAVCC

MGTVCCAUX_L

VCCO_VCC_DDR13

VCCINT

VCCO_2V5_DDR13

VCCO_VTT_DDR13

VCCO_1V8

VCCAUX

VADJ_1V8

CLK

VCCO_VTT_DDR24

VCCO_2V5_DDR24

MGTAVTT

CLK_OK

VCCINT_IO

MGTVCCAUX_R

fpga

       

       

        

        

        

        

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

V_IN

V_EN
IC7 V_OUT

       

V_IN

SHDN
IC6 V_OUT

       

V_IN

V_EN
IC9 V_OUT

       

V_IN

SHDN
IC5 V_OUT

       

V_IN

V_EN
IC8 V_OUT

       

       

       

       

       

        

       

       

bmc

B_CLOCK_FLOL

C_RESET_N

B_FDV_1V8

B_CDV_1V8

B_PSUP_ON

C_PLL_DC_OK

        

       

       

       

        

        

VRI

VCC
U24 VREF

VRI

VCC
U25 VREF

VRI

VCC
U39 VREF

VRI

VCC
U40 VREF

       

       

        

       

        

VS U44

VS U48

       

       

       

       

power_bus BUS         

consumer

Figure 7.1: An automatically generated picture of the Enzian platform’s components and conductors.

In the next two sections, we will discuss why we consider the Enzian platform to be
well-designed and give some general advice on how model instances should ideally be
created.
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7.2 Why the Enzian platform is well-designed

The platform of the Enzian is designed in a manner that avoids almost all of the concerns
we have voiced over the last few chapters.

7.2.1 Monitoring Functionality

The Enzian platform offers a wealth of monitoring functionality. Most notably, it in-
cludes two ispPAC-POWR1220AT8 manufactured by Lattice Semiconductor which fea-
ture twelve VMON inputs that can be used to measure the voltage across connected
conductors [23]. Both these ISPPACs are connected to the always-on power rails of the
main power supply and a dedicated I2C bus and thus their monitoring functionality is
always available.

This always-on monitoring functionality is ideal for the implementation of Complete
events. If we had to rely on functionality like READ VIN as defined by the MAX15301,
more in-depth modelling of such monitoring actions would be required: READ VIN is
a PMBus command and consequently we would need to ensure that the bus is available
and the MAX15301 powered to make use of it. Ultimately, this would require us to
introduce soft event restrictions to ensure that, whenever possible, at least one monitoring
functionality is available to confirm a complete event.

7.2.2 I2C Buses

The Enzian features several communications buses. The producers connected to each of
these have been chosen in a manner that no powered-down device on the bus ever thwarts
communication with another powered device on the same bus.

On the Enzian, buses are hence available in every situation where we might desire to
make use of them. This avoids all the concerns we had in connection with the modelling
of buses in section 5.6.

7.2.3 Enable Signals

The Enzian’s platform generously provides a dedicated enable signal for every output
produced by a producer. This allows us to elegantly solve another problem we faced, this
time in connection with events and ideal static management.

Let us recall the situation associated with the following figure:
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In section 5.5.7, we discussed how we might construct sequence requirements for the
MAX15301’s OUT pin that adhere to ideal static management (see definition 34). Unless
we are fine with OUT adopting its current default state (transiently, at least), there is no
way to transition from P3 to P1 in an valid fashion. Thus, when entering State Possibility
P3, we automatically restrict the next stable state OUT will adopt (transiently) to be
either 0V or the default state.

The only situation where we might need to transition to state like P3 happens on a
platform where two or more producers have a shared enable signal but individual power
supplies. On the Enzian, with its dedicated enable signals, this clearly does not happen,
so we avoid entering states like P3 by not even modelling them in the first place. This
has the following, additional advantage:

Consider the level plot of the MAX15301. Without P3, the red region that symbolises
that the voltage of OUT is 0V takes on a convex shape. This has two major advantages:
Firstly, we could now model both the green (dotted) and red (grid pattern) region with a
single State Possibility, which favourably improves the runtime of our State Generation
algorithm. Secondly, this convexity prevents the need for additional requirements to be
imposed on already happened events if we wish to adhere to ideal static management.
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Figure 7.2: Simplification of the MAX15301’s State Possibilities possible on the Enzian

7.2.4 Hierarchy

The platform of the Enzian is strictly hierarchical. This can be seen quite easily by
studying the visualisation of the Enzian’s topology in figure 7.1: If we disregard purely
monitoring-based connections such as said to the VMON inputs of the ispPAC as men-
tioned in section 7.2.1, we find that the multi-graph obtained by taking components as
nodes and conductors as directed edges is acyclic.

This is not such a huge surprise; a cyclic dependency in a power and clock manage-
ment platform most likely hints at a certain degree of self-management of the involved
components, which in turn implies that the platform should be modelled differently.

But regardless of whether a strict hierarchy is to be expected or not, the fact that Enzian
happens to be one lets us resolve implicit events a bit more efficiently. We discuss this in
more detail in section 8.2.2.

7.3 Dependence of CPU and FPGA

Studying the visualisation of the Enzian platform, it looks like CPU and FPGA could
be powered independently of each other: both seem to sit behind an individual wall of
producers dedicated to them. This is, however, not completely true: The 3v3 psup rail
of the main power supply directly supplies the VDD IO input of the ThunderX, while
also serving as supply for some of the FPGA’s producers. Therefore, the CPU can be
booted individually without issue (we simply do not enable the producers on the FPGA
side) but if the same is possible for the FPGA depends on the robustness of the CPU’s
power sequence.

Powering VDD IO along with enabling the main clock signal consists of the first step in
the ThunderX’s boot sequence [7]. To determine to which degree it is possible to boot
the FPGA independently, the following questions need to be answered:
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� Deferring the bootstrapping of the CPU: Can the ThunderX boot correctly even if
an arbitrarily long delay is inserted between steps one and two of its power sequence?

� Only booting the FPGA: Is it safe to bring VDD IO online if we do not intend to
boot the ThunderX and thus do not complete its boot sequence?

Depending on the answers, our consumer demands must be formulated differently, either
allowing or disallowing the FPGA to boot independently, possibly with the introduction
of a new Ready CPU power state that ensures that step 1 of the CPU’s boot sequence is
executed correctly such that the CPU can later on be brought up without power cycling
the FPGA.

Our model currently enforces the most conservative option that disallows the FPGA from
being booted independently.

7.4 The Modelling process

Using the example of the Enzian platform, this section discusses some of the modelling
pitfalls as well as what constitutes a good platform model.

7.4.1 Consumer Transitions

It is crucial that descriptions of consumer transitions are adapted to the capabilities of
the platform. As an example, we take a closer look at the first step in the ThunderX’s
power sequence that was already mentioned above. The manual instructs that the main
clock should be enabled before or while VDD IO is brought online [7].

As we have seen in our discussion about events, it is difficult if not impossible to enforce
that two conductor changes happen at the same time. It is also not clear how forgiving
the bootstrap process of the ThunderX is to the main clock being enabled a bit later
than VDD IO is powered. For this reason, we might be tempted to decompose this step
as follows:

1. Enable the main clock

2. Power VDD IO

The design of the Enzian platform does not allow this, however: The main clock generator
is powered by the conductor connected to the VDD IO input of the ThunderX.

7.4.2 Sequence Generation

Recall the observation we made in context with producers about the unpredictability of
the next output they might need to provide (see observation 13). Ideally, no matter what
kind of consumer demands C are imposed next, static management should be able to
realise them as long as it is within the capabilities of the platform. In particular, this
means that the following should hold true:
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Statement 53. Let (P, C) be an instance of the State Generation problem. If we task
our Sequence Generation mechanism with returning all solutions for instance (P, C) and
it finds a non-empty set S of solutions, our Sequence Generation mechanism should be
able to generate an event sequence for at least one solution in S.

Remark. Note that it does not make sense to ask that our Sequence Generation mech-
anism return an event sequence for every solution in S: Since most of our platform is
transparent to consumers (see observation 15), most of the platform state that we gen-
erate is transparent to them too and therefore not every valid platform state must truly
be attainable to fulfil any sensible consumer demands.

Whether or not we adhere to the above statement depends on the quality and strictness
of the sequence requirements provided by the producer descriptions. Therefore, we arrive
at the following modelling advice:

Advice 54. Vary the strictness of sequence requirements until an adequate compromise
between adhering to ideal static management and the above statement is found.

Due to the Enzian platform being very well-designed, we claim that our Enzian platform
instance achieves a bit more than the above mentioned compromise:

Claim 55. We claim that the sequence requirements described by our platform instance
of the Enzian have the following properties:

� They adhere to ideal static management.

� For every solution found by our State Generation mechanism, a valid event sequence
is found.

101



Chapter 8

Implementation

This chapter is dedicated to the implementation we constructed as a proof of concept.
Our mechanisms have been written in Python and, for the sake of convenience, expect
model instances that are also specified in Python. In the next few sections, we discuss
different implementation aspects in more detail.

8.1 Model syntax

We leverage Python’s object oriented features for the descriptions of components: Every
type of consumer and producer is described using the static attributes of a dedicated
python class. A platform instance can then be created by instantiating the appropriate
descriptions and by specifying the conductor connections between component instances.

For the sake of better readability and easier specification, the model syntax our imple-
mentation expects deviates slightly from the one presented in the modelling chapter. The
remaining subsections focus on these differences:

8.1.1 Conductor States

Our implementation makes use of the same simplifications as we have introduced in sec-
tion 5.3: direct currents are specified using a single voltage dimension and logical signals
using the set {0, 1} rather than the general high, low and freq expression with which
we have defined Conductor States. To ensure that these simplifications are understood
correctly, our implementation requires each input and output to specify its state type as
logical, dc, clock, or ac.

We have introduced some abbreviations that allow for a simpler (and more storage effi-
cient) representation of State Spaces: For two integers a ≤ b, the set {a, a+1, ..., b-1,
b} containing all integers between a and b (inclusively) is abbreviated as a tuple (a, b).
Note that in order to avoid confusion between such a range and the representation of a
State Space or Conductor State, we require the latter to be specified as (nested) Python
lists.

For the sake of easier interpretation by our implementation, we require every State Space
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dimension to be either specified as a set or an aforementioned range. To mitigate this
more cumbersome notation, we interpret these sets in a Cartesian product fashion for
multi-dimensional State Spaces (such as clock signals). Thus, the notation

[[{0, 1}, (4, 6)]]

is equivalent to:

[[{0}, {4}], [{0}, {5}], [{0}, {6}], [{1}, {4}], [{1}, {5}], [{1}, {6}]]

8.1.2 State Requirements

Rather than imitating the State Requirement structure proposed by our model, our im-
plementation makes use of Python dictionaries whereby the key corresponds to the id
and the associated value to the state attribute of a State Requirement structure.

8.1.3 Complex constraints

Occasionally, we need to be able to express certain relations that must be observed
by inputs and outputs of a certain producer. An example for such a producer present
on the Enzian is the NCP51400 [24]. Based on an input voltage VDD, it outputs the
corresponding reference (VREF) and termination (VTT) voltages for DDR SDRAM.

According to the description of DDR SDRAM voltage termination found in [12], the
following relations exist between VDD, VREF and VTT:

VDD = VREF = 1
2

VTT

Of course, our producer description can accommodate arbitrary such constraints by hard-
coding all possible state combinations into individual State Possibilities. In the case of
the NCP51400, this would result in up to 2600 such Possibilities, since it allows for VDD
to be in a range from 1V to 3.6V. Considering the algorithm we proposed to solve the
State Generation problem in section 6.2.3, which exhaustively tries all such Possibilities,
it is clear why this representation is not such a good idea in practise.

For this reason, our implementation allows for the specification of arbitrary additional
constraints, which will be passed to the Z3 constraint solver [1] along with the State Space
mapping S returned by the procedure described in 6.2.3.

8.1.4 Default States

As mentioned in section 5.6.3, our implementation is responsible for the correct inclusion
of default states. For this purpose, our implementation allows every State Possibility P to
specify a state update function. After every static management action, P.state is updated
with the State Space returned by that function.
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8.1.5 Representation of Events

The representation of sequence requirements has been simplified in accordance with the
nature of the Enzian topology: Since according to claim 55, our description adheres to
ideal static management and because of the convexity of equi-output spaces discussed in
section 7.2.3, we can make the following observations about events on the Enzian:

� If a conductor’s state does not change, its Complete and Initiate events have auto-
matically already happened and no further requirements are needed.

� If the state of a conductor C1 changes, but stays within the State Requirements
for C1 that the chosen State Possibility P for conductor C2 specifies for C1, then
C1’s change has already happened from the perspective of C2. This means that if
the Event Graph of P requires something to happen strictly after the change of C2,
Sequence Generation would fail.

These two observations capture the majority of the Initial State dependency that most
sequence requirement functions would need to specify. Our model implementation thus
requires State Possibilities to specify a single Event Graph. In the few cases where
additional initial state dependencies need to be specified, a dependency update function
can be provided, analogous to the state update function described in the previous section.

8.1.6 Consumer Transitions

Unlike the interpretation we have used in our model and mechanism discussions, our
implementation considers specifications of consumer transitions to be incremental. Thus,
a conductor W need only be mentioned in a transition step S if the consumer demands
concerning W change in transition step S.

8.2 Mechanism Implementation

This section discusses how we have implemented the mechanisms detailed in chapter 6.

8.2.1 State Generation

We have implemented the State Generation algorithm precisely as presented in section
6.2.3. In the following subsections, we will comment on some runtime improvements we
have developed for said algorithm, as well as how we have cast the State Generation to
a z3-solver problem instance.

Advanced Backtracking The stack-based backtracking mechanism the procedure de-
scribed in 6.2.3 hints at can be extremely inefficient. Consider the following situation:
Our platform features n conductors W(1) to W(n). We consider the following, fictional
execution state of our State Generation procedure for this platform:

Desired States = {req} with req.id = W(n) and req.state = S. Unfortunately, conductor
W(n) does not possess any State Possibilities that agree with state S, so our procedure
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will inevitably fail in the next step. This unfortunate desired state was imposed on
W(n) by the currently chosen State Possibility for W(1), Poss(W(1)). Now, consider the
following Choices stack:

Choices
Associated Conductor Execution State Remaining Possibilities

W(n-1) E(n-1)
1
4
16

W(n-2) E(n-2)

3
4
5
8

...
W(1) E(1) 1

Stack bottom

Table 8.1: An example stack of execution states

Whereby the associated conductor references the conductor for which we have pushed
the remaining state possibilities in Options along with the current execution state onto
Choices on line 5 (see section 6.2.3). The number in the column Remaining Possibilities
defines the index of the corresponding State Possibility. For instance, the 1 in the first
row indicates that the first State Possibility of W(n-1), i.e. W(n-1).poss[1], constitutes
another State Possibility worth exploring.

If we simply pop the next Possibility to try from our stack as described by our procedure,
we need to work through the entire Choices stack before our procedure reconsiders the
choice of Poss(W(1)) that causes it to fail because of the state S imposed on W(n). This
working through the stack is by no means a linear process: For every of the 4 remaining
possibilities for W(n-2), we will discover new Options for conductor W(n-1) that will be
added to our stack and will consequently need to be tried first.

Considering this example, it is obvious that with naive stack-based backtracking, the
performance of our State Generation procedure heavily depends on the sequence in which
choices about State Possibilities are made, i.e. the sequence in which we attempt to
enforce our requirements in Desired States.

We can improve this situation by including some contextual information into our De-
sired States. Whenever we add an additional State Requirement to Desired States, we
could for instance include the conductor whose choice of State Possibility was the cause
of this requirement. In the example above, we would therefore note that req was caused
by conductor W(1). Consequently, we could directly discard the whole stack up to the
entry for W(1), since all State Possibility decisions and computations made since execu-
tion state E(1) might have been influenced by the impossible choice Poss(W(1)) and are
therefore worthless.
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In practise, the correct implementation of such an advanced backtracking mechanism is
not entirely trivial: we need to be very careful with discarding portions of our stack,
especially if we require our procedure to return all possible solutions.

Likelihood Heuristic A very simple heuristic that we can integrate into our State
Generation procedure is to always consider different State Possibilities in order. In other
words, of all State Possibilities present in Options as constructed in line 2, we always try
the option with the smallest index first. This of course requires our producer descriptions
to order State Possibilities accordingly:

Advice 56. Order each Output’s State Possibilities according to decreasing likelihood.

Integration of z3 Next to our State Generation procedure as described in section 6.2.3,
we have implemented an alternative mechanism. This alternative mechanism consists of
a transformation of the State Generation problem instance to a global constraint problem
that is then handed to the Z3 SMT solver [1]. In this section, we very roughly sketch the
nature of this translation.

The main ingredient of a Z3 problem formulation are atomic variables that are combined
to formulas using symbols defined by theories.[5]

For such a problem formulation to solve the State Generation problem, we need to be
able to extract the resulting Platform State S and the State Possibility assignment Poss
from the variable assignments returned by the solver. For every platform conductor W,
we thus introduce the following variables:

� A variable Poss(W) for the state possibility chosen for W

� Three variables High(W), Low(W) and Freq(W) to represent the three attributes
of a Conductor State structure

Using these variables, we can then precisely implement the conditions of the State Gen-
eration problem using the standard logic and arithmetic theories provided by the Z3
solver.

Comparison of mechanisms Our implemented mechanisms feature different strengths
and weaknesses. We will discuss these based on the different purposes for which we will
make use of them in the context of our other mechanisms:

� Finding all solutions For this purpose our own State Generation procedure is
better suited. As discussed in our mechanism section, we can very easily and
naturally extend it to return all possible solutions. The Z3 solver on the other
hand offers no explicit support for the extraction of all solutions. Instead, we would
need to impose more and more additional constraints to prevent the solver from
returning already seen solutions.
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� Deciding if a solution exists. Our own State Generation procedure is not very
well suited to this problem. Despite advanced backtracking, to truly confirm that
no solution exists our procedure will need to actively eliminate every possible com-
bination of State Possibilities. This, depending on how quickly conflicts manifest
themselves, might take a considerable amount of time. Z3 directly supports the
checking of the feasibility of a problem. Of course, if this check is more perfor-
mant heavily depends on its concrete implementation, but the Z3 solver is heavily
optimised and makes use of sophisticated heuristics.

� Finding a good solution Occasionally, we might perceive some Stable Platform
state to be better than another. For instance when it comes to recommended
operating conditions, it is best if we choose a voltage that is a far away from
the over- and under-voltage lockout values as possible, i.e. ideally some mean
value. Similarly, we ideally pick a regulator’s default voltage whenever possible,
since we thus need to issue fewer PMBus commands and can transition to the new
stable platform state more quickly. While the Z3 solver allows for the specification
of so-called soft-constraints to express such preferences, we believe that our own
State Generation procedure offers more natural control over the solutions found.
Firstly, it returns a State Space assignment from which we can pick any state that
suits our needs best. Secondly, instead of making use of the likelihood heuristic
explained above, we can order the different State Possibilities to reflect our solution
preferences.

8.2.2 Sequence Generation

In this section, we will discuss our implementation of the Sequence Generation mechanism
as well as its integration with the State Generation mechanisms discussed in the last
section.

Implementation The implementation of the Sequence Generation mechanisms mostly
corresponds to the procedure sketched in section 6.3.4. The main difference is the resolu-
tion of Implicit States. Generally, an Implicit Event defined by an output of a producer
P mostly references events concerning inputs of producer P. This is particularly true
for the producers on the Enzian. Furthermore, as remarked upon in section 7.2.4, the
Enzian’s platform topology is strictly hierarchical, the resulting Implicit Event graph is
guaranteed to be acyclic. The resolution of Implicit events can thus be performed a bit
more efficiently by resolving the different events in a reversed topological order.

Integration with State Generation Recalling modelling advice 54, the description of
sequence requirements should ideally be performed in a manner that adheres to statement
53, i.e. that for at least one solution returned by the State Generation mechanism, the
Sequence Generation mechanism successfully returns a valid command sequence. If we
assume that this is the case, this immediately implies that we must tie the two mechanisms
together as follows:
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� If our own State Generation procedure is used, State and Sequence generation
are tied together as described above. Consequently, we are guaranteed to find a
valid command sequence if our platform description adheres to statement 53. This
is the recommended choice.

� If the Z3-based mechanism is picked, our implementation will only pass the
initial solution returned by the Z3-solver to the Sequence Generation mechanism.
No attempt to extract any further solutions from the Z3-solver will be made, and
hence the success of Sequence Generation cannot be guaranteed even if our model
adheres to statement 53.

Figure 8.1: The consequences the choice of State Generation mechanism has

We continue to request a new solution S of our State Generation mechanism until Se-
quence generation succeeds on S.

Thinking back to the comparison of the two State Generation mechanisms at our disposal,
our own State Generation mechanism is well-suited for this purpose, since providing as
many alternate solutions as desired is a natural extension of it.

However, for the sake of flexibility, we leave the choice of which mechanism is supposed
to be used to the user. We will discuss how this choice is communicated to the imple-
mentation in section 8.2.4. The following consequences are associated with the different
options:

8.2.3 Consumer Demand Generation

Our implementation is a more efficient but also more restricted version of the Consumer
Demand Generation algorithm sketched in section 6.4.3. We justify this restriction based
on the modelling advice 54: If we assume that that our sequence descriptions adhere to
statement 53, our Consumer Demand Generation mechanism need not worry about the
success of Sequence Generation.

As already mentioned in section 6.4.3, this assumption prevents us from needing to keep
track of the potentially exponentially many platform states with which we reached a
certain DP-table entry. Furthermore, the Feasible predicate is reduced to a call to the
State Generation mechanism to see if a valid solution exists. The implementation of this
Feasible predicate is thus an ideal use case of our Z3-based State Generation mechanism.

8.2.4 Implementation boundaries

Since our implementation has not been fully integrated into the Enzian’s management
software, this section describes its implementation boundaries and the resulting usage. We
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split this discussion into two parts, which are describing the input and output boundaries
respectively.

Output boundary The format of bus commands expected by different producers is
very specific and fairly complex. Similarly, the implementation of bus protocols and
the correct handling of gpio interfaces is non-trivial. Therefore, our implementation
merely generates a sequence of python commands that leverage the driver functionalities
implemented by the existing power and clock management solution on the Enzian.

Input boundary Our mechanisms are not capable of directly interpreting any standard
commands defined by the management interfaces discussed in section 3.4.1. Instead, our
implementation exposes the following methods that can be called on a platform instance.

Note that since our mechanisms do not directly update the state of the real physical
platform, the platform instance is keeping track of the platform state as it would be if
the generated management actions had been applied. To avoid confusion, we refer to this
as the virtual platform state.

� parametrised state search(Demands, Flags) Executes the tied-together State
Generation and Sequence Generation mechanisms (see section 8.2.2) on the given
Demands, the current virtual platform state and as parametrised by Flags and
returns the management actions found without updating the virtual platform state.

� apply changes(Demands, Flags) Wrapper for parametrised state search that ad-
ditionally updates the virtual platform state

� stateful node update(Transitions, Flags) Performs Consumer Demand Genera-
tion for the requested transitions and proceeds to call apply changes on every step
of the generated interleaving.

The following table summarizes the user-available Flags that can be passed to the above
methods.
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Flag Default Meaning

use z3 False
if the Z3-based mechanism should be used, with con-
sequences as detailed in figure 8.1.

all solutions False

if all valid command sequences should be returned
or not. If passed to apply changes or state-
ful node update, the command sequence that makes
the fewest changes to the current platform state is
chosen (for every transition step). Ignored if use z3 is
set.

extend True
Adds trivial state requirements for all conductors and
consequently ensures that the consumer demands fol-
low assumption 49 (see section 6.2.3)

advanced backtracking True
If advanced backtracking should be used. Ignored if
use z3 is set.

Table 8.2: The set of flags that can be passed to the mechanisms
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Chapter 9

Evaluation

In this chapter, we attempt to evaluate the feasibility of the static management approach
we have presented in the previous chapters. Unfortunately, this is not such an easy
task: the detailed design schematics required to properly model another platform are
generally not made publicly available. Thus, our only other point of reference is the
Enzian platform and its existing implementation of power and clock management.

9.1 Performance of our Mechanisms

This section is dedicated to the performance of our mechanisms. To our knowledge,
there is no other approach to static management beyond hard-coded point solutions.
Consequently, we lack a point of reference to compare our mechanism performance to,
which will inevitably result in this particular evaluation being detached from the current
state-of-the-art.

Without an external point of reference, the exact runtime of our mechanisms is not
necessarily relevant: If we intend to use our approach in a purely offline manner to pre-
generate command sequences for different management scenarios that are consequently
hard-coded in the BMC firmware, it would not be a huge tragedy if we were forced to
wait a long but manageable time for the results. The situation is completely different if
we were interested in using our mechanisms to perform online static management. In
that case, performance is critical and we would need to establish and prove hard runtime
bounds.

According to this distinction, we will structure our runtime measurements into two cat-
egories: One performed from an online static management angle discussed in the next
subsection and the other to reason about whether we achieve a manageable runtime
required for an offline application.

9.1.1 Online Static Management

This section is dedicated to evaluating our approach from an online management per-
spective. As already hinted at, this evaluation will not attempt to achieve the rigour and
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strictness that is truly required for any real-time application. Instead, we design our run-
time measurements in a manner that they provide some very empirical and rudimentary
insight into whether we could be successful in establishing hard runtime bounds for our
static management implementation on the Enzian platform specifically.

For this empirical evaluation, we will not be concerned with the performance of Consumer
Demand Generation. Consumer transitions are fixed management actions and can there-
fore, even in the case of an online static management approach, be pre-computed offline.
We will instead focus on executions of the tied-together State and Sequence Generation
mechanisms (as described in section 8.2.1). To arrive at our intended experimental design,
we must firstly make some general observations about the runtime of these mechanisms:

First of all, we recall that our Sequence Generation mechanism solves an approximation of
the true NP-hard problem in polynomial time. For the following performance evaluation,
we will thus assume that the runtime of said is not such a huge concern and behaves more
or less predictably. Therefore, we can focus our efforts entirely on bounding the runtime
of the State Generation mechanism, which is solving the general NP-hard problem.

Furthermore, we recall claim 55. There, we stated that our sequence requirements for
the Enzian platform could be designed in an ideal manner, i.e. such that we adhere
to ideal static management and for every solution of our State Generation mechanism,
a valid command sequence can be found. This immediately implies that for arbitrary
consumer demands, only a single State Generation solution needs to be found and passed
to Sequence Generation. Together with the above argumentation, this means in particular
that we need not worry about the effects different initial platform states have on the
measured runtime.

With initial platform states being irrelevant, the only problem that keeps us from estab-
lishing a meaningful empirical runtime bound is the wealth of different consumer demands
an online static management actions would potentially need to deal with. Since the im-
plementation of the Z3-solver is a black box from our point of view, we cannot make
any statements about the effect these different demands might have on its performance.
However, for our own State Generation procedure, we can make the following observation:

Observation 57. Let C1 and C2 be two sets of consumer demands such that C2 ⊆ C1
(with ⊆ as defined in section 5.9.3). Then, the worst case runtime our State Generation
procedure exhibits when tasked with finding all solutions for demands C1 is an upper
bound for the worst case runtime it requires to find one solution for demands C2.

That the above observation holds is fairly obvious: Let S1 be the set of solutions for
demands C1 and S2 the set of solutions for demands C2. Then S2 ⊆ S1, and therefore
the worst case runtime required to retrieve set S1 will naturally be an upper bound for
the time it takes to retrieve a single element of S2.
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Note 58. One might be tempted to think that the worst case runtime required to retrieve
a single solution for C1 already provides an upper bound for finding a single solution for
C2. More concrete consumer demands restrict the space of State Possibilities that must
be searched, and it seems intuitive that this should also speed-up the process of finding
one solution. This is, however, not generally true: Consider the following toy example
of a platform consisting of two conductors W and W’: In figure 9.1, we have marked
valid State Possibility combinations of W and W’ with a green dot, and the Possibilities
allowed by consumer demands C2 and C1 with an orange and blue frame respectively.

Figure 9.1: A plot visualising the fact that a smaller search space does not necessarily imply that a
solution will be found more quickly.

As this plot shows, for consumer demands C1, our State Generation procedure will never
need to revert: No matter which possibility we choose for W or W’, the combination
with P3 of the other conductor will yield a valid solution. The situation is different for
consumer demands C2; if we happen to choose P1 for either conductor, we will inevitably
be required to revert. Consequently, the worst case runtime for finding a single solution
for demands C1 does not provide an upper bound for the worst-case time required to find
a solution for C2.

Thus, to obtain an estimate on the worst-case performance of our State Generation
procedure for any problem online static management must solve, it suffices to consider
the worst-case performance of finding all solutions for the most general problems. These
problems are statically known: they correspond to all combinations of power states the
consumers of a platform can assume. On the Enzian, these would be the following
problems:
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Problem designation CPU power state FPGA power state
P1 Powered on Powered on
P2 Powered on Powered off
P3 Powered off Powered off

Table 9.1: An overview of problem instances P1 to P3

Remark. As discussed in section 7, our Enzian platform instance does not allow the
FPGA to be booted independently, which is why the option CPU: off, FPGA: on is
missing.

The last question we need to answer is how we need to apply our own State Generation
procedure to these problem instances such that we do not actively prevent the worst-
case performance from manifesting itself. Whether or not we see worst-case behaviour
depends on the choices our procedure makes. More concretely, it depends on the sequence
in which State Requirements are enforced and the sequence in which the individual State
Possibilities are tried. With the roughly sixty conductors our Enzian platform features,
exhaustively measuring performance on all such sequences is not feasible. We instead
need to resort to randomisation.

Recalling our reasoning about why more advanced backtracking was needed in section
8.2.1, it is fairly clear that the performance of our naive backtracking mechanism will be
poor for some such randomly chosen sequences. Thus, the question we wish to answer
with our measurements boils down to the following:

Question 59. Are the problem instances P1 to P3 sufficiently well-conditioned that our
State Generation procedure with advanced backtracking performs reliably enough that
we can empirically bound its runtime on said instances?

The next paragraph discusses the measurement set-up in more detail.

Set-up Firstly, we want to discuss how the aforementioned randomness can be intro-
duced into our implementation. Since State Possibilities are tried in-order in accordance
with the likelihood heuristic discussion in section 8.2.1, we can randomize this order by
simply shuffling the sequence in which they are stored in our platform instance. The order
in which our implementation enforces requirements in Desired States is governed by the
platform attribute sorted wire list. Said contains an ordered list of all conductors, and in
every iteration our procedure performs, the requirement associated with the conductor
featuring the smallest index in said list is enforced. Thus, we can achieve randomisation
by shuffling said attribute.

We perform three sets of runtime-measurements M1, M2 and M3 for every problem
instance Pi ∈ {P1, P2, P3}. We will describe the purpose of each measurement set below
the detailed set-up given by the following list:

(M1) Repeat X times:
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� Randomly shuffle State Possibilities and the sorted wire list as detailed above

� Configure the power states of CPU and FPGA according to Pi

� Measure the runtime of parametrized state search({}, flags) for each of the
following flag combinations:

(a)

extend True
all solutions False

use z3 False
advanced backtracking True

(b)

extend True
all solutions False

use z3 False
advanced backtracking False

(c)

extend True
all solutions -

use z3 True
advanced backtracking -

(M2) Repeat Y times:

� Randomly shuffle State Possibilities and the sorted wire list as detailed above

� Configure the power states of CPU and FPGA according to Pi

� Measure the runtime of parametrized state search({}, flags) with flags defined
as:

extend True
all solutions False

use z3 False
advanced backtracking True

(M3) Repeat Z times:

� Randomly shuffle State Possibilities and the sorted wire list as detailed above

� Configure the power states of CPU and FPGA according to Pi

� Measure the runtime of parametrized state search(narrowed isl poss, flags)
with flags defined as:

extend True
all solutions True

use z3 False
advanced backtracking True

With M1, we wish gain a general overview of the performance of the different versions of
our State Generation mechanisms. We especially wish to contrast the performance of our
State Generation procedure with and without advanced backtracking, and whether there
is any correlation between advanced and naive backtracking performing poorly on any
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given sequence. We include a measurement of the Z3-based mechanism, which is inde-
pendent of the sequence randomisation, to provide some baseline performance. Recalling
the meaning of the flags as discussed in section 8.2.4, it follows that the measurements
taken in M1 correspond to (a) the performance of our State Generation procedure with
advanced backtracking, (b) the performance of our procedure with naive stack-based
backtracking and (c) the performance of the Z3-based mechanism. In anticipation of the
naive backtracking exhibiting bad performance, we choose a small X = 100.

As we have detailed in the last section, the worst case time required to find only a
single solution on problems P1 to P3 is not sufficient to provide a worst-case runtime
bound for all online static management problems. However, we are fairly convinced that
the measurement set M2 provides some indication of the performance we can expect in
general. We choose Y = 500.

Finally, M3 is supposed to to answer the question we have established in the last section.
To provide more significant measurements, we are narrowing down what we refer to as
ISL possibilities. On the Enzian, a total of four ISL6334d [20] producers is tasked with
providing the supply voltage for both the ThunderX’s as well as the FPGA’s DRAM
banks. The exact voltage the ISLs are supposed to supply is conveyed to them via their
so-called VID inputs, 8 different logical inputs that select among 178 different available
voltages. Naturally, each of these must be described by a dedicated State Possibility.
If not narrowed down, these different possibilities cause our solution space to explode,
thereby bloating the runtime of our State Generation procedure unnecessarily: Since the
conductors providing these VID inputs are not shared in complex manners with logical
inputs of other producers, any desired VID combination can be realised.

Therefore, we can safely narrow down these ISL possibilities in M3 without jeopardising
our upper runtime-bound of online static management, provided that we also narrow
down these possibilities for every such management request prior to handing it to our
procedure.

To perform our measurements, we will make use of the timeit python library. Said
provides a function timeit, which runs a function passed to it as many times as specified
by the argument number and returns the total time measured. To provide more stable
measurements, we set number = 3 for all method calls with the exception of the method
calls in M1 that make use of naive backtracking.

Ideally, this runtime measurement would be conducted on the Enzian BMC to account
for its limited computational power and memory. However, our implementation features
non-standard dependencies such as the Z3 solver and its python wrapper and thus porting
it to the BMC proper is a non-trivial task. Instead, we conduct our measurements on an
Intel Core i7-6700k CPU @ 4.000GHz with 32GB DDR4 RAM.

Results In this paragraph, we examine the measurement data obtained from perform-
ing measurements M1 to M3. We collect a set of observations concerning the general
nature of this data, which we will use in the next paragraphs to interpret our findings
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Figure 9.2: A performance comparison of the backtracking mechanisms. Every symbol in the plot con-
trasts the measured runtimes of advanced and naive backtracking on a particular randomised sequence.
For reference, we have additionally plotted the function f(x) = x.

and draw appropriate conclusions.

As already mentioned in the last paragraph, our main motivation for measurement set
M1 was contrasting the performance of advanced and naive backtracking. Since both
mechanism versions are dependent on the randomisation of the Possibility and Conductor
sequences, we have visualised the collected data in a scatter plot in figure 9.2. Every
symbol in that figure relates a runtime measurement for advanced and naive backtracking
on a particular such randomisation. Noting the log-scale of the x-axis, we make the
following observations:

Observation 60. Based on figure 9.2, the runtime measurements of naive backtracking
exhibit more variance than said of advanced backtracking.

Observation 61. Based on figure 9.2 and the plot of the function f(x) = x, advanced
backtracking tends to perform better than naive backtracking, but is not always strictly
better.

Additionally, M1 also included measurements of the State Generation mechanism based
on the Z3-solver. Unlike our own State Generation procedure, the Z3 solver does not
depend on the randomisation of Possibility and conductor sequences. Therefore, we have
collected those measurements in a histogram in figure 9.3, rather than adding a third
dimension to the scatter plot discussed above. Studying this histogram, we observe that:

Observation 62. According to figure 9.3, the performance of the Z3-based mechanism
is very stable, also across problem instances.

The remaining measurement sets M2 and M3 focus on the performance of the advanced
backtracking mechanism only. Since we aim to reason about worst-case performances,
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Figure 9.3: A histogram of runtime measurements of the Z3 solver on the different problem instances.

examining the general distribution of the collected measurement values seems most in-
formative. We therefore visualise the remaining data as histograms.

For measurement set M2, we define an outlier to be a runtime measurement value of more
than 2 seconds. Lacking more information about the true distribution of our runtime,
this distinction by itself is pretty arbitrary. However, representing such outliers and
more average values in separate histograms improves the clarity and readability of our
diagrams, which can be found in table 9.2. We observe the following:

Observation 63. According to table 9.2, advanced backtracking tasked with finding
only one solution takes less than 2 seconds in the majority of measurements.

Observation 64. Based on table 9.2, advanced backtracking tasked with finding only
one solution for problem instances P1 to P3 exhibits substantial outliers, most notably
one of 837.77 seconds.

Lastly, table 9.3 summarises the data we collected for measurement set M3. Unlike
M2, splitting our measurements into outliers and normal values was not necessary to
adequately represent the collected measurements. We observe the following:

Observation 65. According to table 9.3, advanced backtracking tasked with finding
all solutions for the reduced problem instances P1 to P3 performs exhibits a tolerable
runtime variance.

We conclude this paragraph with an observation that manifests itself across all measure-
ment sets:
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Histograms created from measurement set M2

Problem P1

Problem P2

Problem P3

Table 9.2: Histograms of the data collected in M2: the performance of advanced backtracking when
tasked with finding only one solution for problem instances P1 to P3.
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Histograms created from measurement set M3

Problem P1

Problem P2

Problem P3

Table 9.3: Histograms of the data collected in M3: the performance of advanced backtracking when
tasked with finding all solutions for restricted problem instances P1 to P3
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Observation 66. Calls to our state generation procedure tasked with solving instance
P1 exhibit the worst and most variable performance compared to the other problem
instances.

Discussion In this paragraph, we try to interpret the observations we have made in
the last paragraph.

The observations we have made in context with M1 (60 and 61) align with our expecta-
tions: Naive backtracking indeed exhibits bad performance on some random sequences.
Furthermore, advanced backtracking features considerably better performance in most
cases, but not always: This is not very surprising either, since the more advanced back-
tracking technique requires additional computations.

An interesting result is the stable performance of the Z3-based mechanism across prob-
lem instances, as noted in observation 62. Although we still cannot estimate the effect
additional constraints will have on the Z3 solver’s runtime, its stability across P1 to
P3 implies that it most likely would not be too bad. Hence, the Z3-based mechanism
might also be a viable candidate for an online static management solution for the Enzian
platform.

The first observation we have made in context of M2 seems pretty promising: Most calls to
our advanced backtracking performed by M2 took no longer than 2 seconds. However, the
outlier of 837.77 seconds we have encountered for P1 is as unexpected as it is substantial.
This immediately implies that we cannot in good conscience provide a runtime bound for
calls to our advanced backtracking procedure to provide a single solution for problems P1
to P3. We recall observation 57, where we had established that the worst-case runtime
of finding a single solution is a strict lower bound of the worst-case runtime of finding
all solutions for problem instances P1 to P3. From this immediately follows that we also
cannot provide an empirical bound of the worst-case runtime of general online static
management problems, as was the original goal of this evaluation.

In light of this, the tolerable variance in runtime (see observation 65) for the data collected
in M3 seems purely coincidental. This is not necessarily the case: Measurement set M3
is not a direct extension of M2 that is tasked with finding all solutions rather than only
one. We have additionally also narrowed down the ISL possibilities, as defined in the
beginning of this section.

We claim that the runtime of the outlier encountered in M2 can be largely attributed to
not restricting said ISL possibilities. Intuitively, this seems quite likely: our advanced
backtracking mechanism is still fairly simplistic and only conservatively approximates
the State Possibility choice responsible for the incompatible conductor states. It may
thus very well be the case that it ends up naively trying out all of the 178 different
ISL possibilities because advanced backtracking fails to recognise that the choice that
prevents our procedure from finding a solution was already made beforehand.

To evaluate the likelihood of our claim, we conduct an additional set of measurements
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M4:

(M4) Repeat 500 times:

� Randomly shuffle State Possibilities and the sorted wire list as detailed above

� Configure the power states of CPU and FPGA according to Pi

� Measure the runtime of the following method calls:

� parametrized state search({}, flags)

� parametrized state search(narrowed isl poss, flags)

With flags defined as follows:

extend True
all solutions False

use z3 False
advanced backtracking True

In essence, M4 repeats measurement set M2 but additionally contrasts the obtained
runtime with said of a call with narrowed ISL Possibilities.

Similar to M1, we visualise our findings using a scatter plot (see figure 9.4). Study-
ing this plot, we observe that the restriction of the problem sets eliminates all outlier
measurements (> 2s) that would appear when solving the original problems P1 to P3.
Furthermore, but unsurprisingly, we can see that the performance on the restricted prob-
lem set is strictly better. This is the case because as detailed in the beginning of this
section, the restriction is benign since all ISL possibilities are achievable.

Hence, based on the lack of substantial outliers observed for M3, we provide an empirical
worst-case runtime bound for online static management problems with restricted ISL
states of 56.90 seconds, which corresponds to the slowest runtime observed in M3.

To conclude our evaluation, we provide a possible explanation for observation 66, which
stated that of all problem instances, P1 always featured the worst and most variable
performance. P1 corresponds to both CPU and FPGA being powered on and therefore
all ISL producers of the platform being active. Consequently, if not restricted (as was the
case for measurements M1 and M2), the negative effect these possibilities might have in
context of backtracking are strongest in P1. In case of M3, where we dealt with restricted
problem instances, the fact that P1 was the most difficult to solve can be attributed to
the number of feasible solutions:

Problem instance Number of solutions
Restricted P1 256
Restricted P2 6
Restricted P3 8

Table 9.4: The number of solutions for restricted P1 to P3
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Figure 9.4: A performance comparison of advanced backtracking with and without restricted ISL states
(according to M4).

As can be seen in the above table, reduced P1 features the largest number of feasible
solutions. Since M3 is tasked with retrieving all possible solutions, this does manifest
itself in the measurements for P1.

9.1.2 Offline Static Management

As mentioned in the beginning of the section, for our mechanisms to be sufficient for
offline static management it suffices to show that their runtime is manageable for the
Enzian platform instance. We have already received some indication that this is the
case for the tied-together State and Sequence Generation mechanisms in the last evalu-
ation. Therefore, this evaluation focuses on the performance of the Consumer Demand
generation.

Quite generally, 6 different combinations of consumer transitions exist on the Enzian
platform, namely:
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Problem designation Consumer Initial consumer state Final consumer state

P1
CPU Powered off Powered on
FPGA Powered off Powered on

P2
CPU Powered off Powered on
FPGA Powered off Powered off

P3
CPU Powered on Powered on
FPGA Powered off Powered on

P4
CPU Powered on Powered off
FPGA Powered off Powered off

P5
CPU Powered on Powered on
FPGA Powered on Powered off

P6
CPU Powered on Powered off
FPGA Powered on Powered off

Table 9.5: Overview of problem instances P1 to P6

As discussed in more detail in the next paragraph, we will perform runtime measurements
for each of the above transitions. In contrast to the requirements of online static man-
agement, it suffices if we detect manageable runtime for at least one, fixed sequence of
State Possibilities and Desired States-enforcement. For our evaluation, we will therefore
stick to the deterministic initialisation values given to all such sequences.

Set-up The general environment and test methodology is identical to the last evalua-
tion. For every problem Pi ∈ {P1, ..., P6} we perform measurements as follows:

� Configure the power states of CPU and FPGA according to Initial(Pi)

� Measure the runtime of the method call stateful node update(Final(Pi), flags) with
flags defined as follows:

extend True
all solutions False

use z3 False
advanced backtracking True

Results The obtained measurements can be found in table 9.6. None of the problem
instances took longer than 3 seconds to solve. All of the measured runtimes, which can
be found in table 9.6, are within at most 3 seconds.
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Problem instance Measured runtime [s]
P1 2.7
P2 1.3
P3 1.7
P4 0.4
P5 1.3
P6 1.5

Table 9.6: Measurements obtained for the six different combinations of consumer transitions possible on
the Enzian platform

Discussion The required 3 seconds are surely tolerable for the generation of offline
static management solutions. What is interesting to note (in comparison with the previ-
ous evaluation) is that the default Possibility and Conductor sequences seem to result in
very good performance. This is not entirely by design: While the Possibility sequences
do follow the likelihood heuristic as detailed in section 8.2.1, the Conductor sequence still
features the order in which the conductor connections were specified when constructing
the Enzian platform description.

Furthermore, the measured times quite nicely reflect the complexity of the different tran-
sitions: For instance the shut-down sequence for the FPGA is a lot more complicated
than said of the CPU: consequently, P4 can be solved more quickly than P3.

9.2 Comparison to existing management solution

As already mentioned in section 8.2.4, the existing management solution has been devel-
oped further during the writing process of this thesis. For the purposes of this evaluation,
we therefore refer to a meanwhile slightly outdated version. At the time, said manage-
ment solution was focused on the correct bring-up and shut-down of both CPU and FPGA
required for testing the correctness of the new Enzian board passes.

In this experiment, we want to see how closely our mechanisms can reproduce the bring-up
sequence implemented in this existing management solution [21]. To achieve a meaningful
comparison, we need to make some slight changes to our implementation. The reason
for this is the following: The mentioned bring-up sequence is mostly booting CPU and
FPGA as sequentially as possible. Our implementation of Consumer Demand genera-
tion is returning only one possible interleaving (which is sufficient under the assumption
that Sequence Generation does not fail) and is currently tweaked to prefer concurrent
interleavings (i.e. speaking in terms of the generated DP-table, as diagonal solutions
as possible), since said require fewer static management actions. We will thus, for the
purposes of this evaluation, change this tweaking to prefer CPU-before-FPGA instead.
Visualised with the Feasible DP table our mechanism is constructing for the bring-up of
both CPU and FPGA, this looks as follows:
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Figure 9.5: A visualisation of the different interleavings: With the interleaving our implementation
normally prefers in orange (striped), said we encourage with our changes in blue and the one implemented
in the existing management solution in green (dotted). Grey field with grid pattern mark impossible
states.

Furthermore, we will task our stateful node transition method to compute all solu-
tions. Recalling the meaning of the different flags presented in 8.2.4, this will have the
following effect: The Stable Platform state of every transition step corresponds to will
be chosen in a manner that requires the fewest changes from the previous transition
step. This more closely mirrors how a human would approach the generation of such
boot sequences: In every step, perform exactly the changes necessary. By asking for all
solutions, we encounter the same issue as in the first evaluation: The wealth of ISL Pos-
sibilities prevent us from finding all solutions in reasonable time. We will therefore once
more restrict these possibilities, which in this case requires a modification our consumer
descriptions.

With that said, what remains to discuss are the means with which we can evaluate the
two solutions. We are going to do so in two steps:

(S1) Determining the similarity of the set of commands present in each sequence.

(S2) Determining the similarity of the ordering of the commands.

If we wish to obtain a meaningful result, the comparison of the ordering is not as trivial
as one might think at first glance. Of course, we could simply evaluate the number of
transpositions necessary to transform one command sequence into the other. However, as
discussed in section 6.3.4, our mechanisms generate command sequences by topologically
sorting a global Event Graph. In general, a topological order is not unique; this is
especially true for Event Graphs of the Enzian platform: The events of producers on
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the same hierarchy level (which are depicted in figure 7.1) can generally be ordered
arbitrarily. Consequently, a lot of information about the possible sequences is lost when
our mechanisms sort the Event Graph.

Since we wish to determine how closely our mechanisms can reproduce the manually con-
structed boot sequence, we will therefore base the comparison of the command orderings
on the internal Event Graph representations rather than the final sequence.

Set-up After applying the aforementioned changes to our implementation, we gather
our evaluation data as follows:

� Set the power states of both FPGA and CPU to Powered-down.

� Run apply changes({}, default flags)

� Extract the command sequence Cgen and event graphs generated by the command:
stateful node transition({CPU: ”Powered on”, FPGA: ”Powered on”)

Note that the call to apply changes is necessary to ensure that our platform features the
correct initial virtual state. Furthermore, according to the operation of our Consumer
Demand Generation mechanism, a separate global event graph is generated for every step
in the generated interleaving, and we thus obtain a set of Event Graphs {G1, ..., Gn}.

For the evaluation of the similarity of the two command sets (S1) we then proceed as
follows: Let Sgen and Sman denote the generated and manual command sets respectively.
We manually construct the following relations on Sgen × Sman:

Syn: {(a, b) | a ∈ Sgen, b ∈ Sman and a, b are syntactically equal}
Sem: {(a, b) | a ∈ Sgen, b ∈ Sman and a, b are semantically equivalent}

Whereby two commands are syntactically equal if their corresponding strings are equal.
For the purposes of this evaluation, we informally define semantic equivalence to only
consider the effects on the platform. As an example, consider the helper function

check voltage(identifier, f, min, max)

that operates as follows: The monitoring function f is called repeatedly until the value
it returns is between (min, max). If this does not happen within a certain time pe-
riod, check voltage returns an exception. Identifier is a human-readable string used for
logging and to generated meaningful error messages.

For our purposes, we identify the following two calls to check voltage to be semantically
equivalent:

1 check_voltage("foo", f, 5, 7)

2 check_voltage("bar", f, 2, 4)
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That is because the monitoring function f is the same in both calls, which renders the two
commands indistinguishable from the perspective of the platform: The state of the same
conductor is being queried in the exact same fashion and only the subsequent processing
of the return value, which is transparent to the platform, differs. In contrast to this, the
following two commands that set the state of a gpio pin ”pin” would not be considered
the same, since the platform is supposed to react differently to the two commands and
must therefore be able to distinguish them:

1 gpio.set_value("pin", False)

2 gpio.set_value("pin", True)

What we want from this relaxed definition of semantic equivalence is that monitoring
commands which only differ slightly in their definition of error margins, for instance
(4.51, 5.49) and (4.5, 5.5), are still considered equivalent. Unfortunately, we also classify
monitoring commands with different target values as semantically equivalent; this is,
however, not such a huge problem as it might seem at first glance: For a check of a
specific conductor state to make sense, said state must have been caused intentionally
beforehand. Hence, differing monitoring target values must also be reflected elsewhere in
the command sequence.

With our definition of semantic equivalence in place, we need to make one final remark
about the nature of our defined relations Sem and Syn: For our command sequences, it
holds that Syn ⊆ Sem. This is not true for arbitrary Python programs: two command
strings appearing in different programs might be equal, yet if their execution contexts
differ and their evaluation is context sensitive, they might not be semantically equivalent.
That Syn ⊆ Sem is the case of our command sequences is quite important, since otherwise
a comparison of the command sets would be nonsensical in the first place.

With all that in mind, we will compare the similarity of command sets by discussing each
of the following sets:

(A) the command pairs appearing in Syn: commands that appear in exactly the same
form in both sequences.

(B) the command pairs appearing in Sem but not in Syn: command pairs that are
syntactically different yet have the same semantic meaning.

(C) the commands in Sman that do not appear in Sem: commands of Sman that do not
semantically correspond to any command in Sgen

(D) the commands in Sgen that do not appear in Sem: commands of Sgen that do not
semantically correspond to any other command in Sman

Figure 9.6: Definitions of sets of interest in the comparison of Sgen and Sman

Comparing the ordering of the two sequences is a bit more involved. In preparation
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for this step, we identify the Complete and Initiate events appearing in the manually
generated sequence, as well as the event relations given by their fixed order. We thus
obtain an event graph G defined by the manual sequence. As an example, consider the
following snippet of manually generated code:

Listing 9.1: a code snipped of the manually generated management solution [21], whereby function f
was abstracted for better readability

1 check_voltage(’FPGA:5 V_PSUP ’, f, 4.75, 5.25)

2 gpio.set_value(’C_PLL_DCOK ’, False)

3 gpio.set_value(’C_RESET_N ’, False)

Whereby check voltage and gpio.set value have the effects as discussed above. In line 1,
the identifier ”FPGA:5V PSUP” passed to check voltage provides the name of the con-
ductor whose state f is checking. Therefore, we associate the event Complete(5v psup)
with line 1. On the Enzian, the conductors connected to gpio pins ”C PLL DCOK” and
”C RESET N” are named equivalently, hence we associate events Initiate(C PLL DCOK)
and Initiate(C RESET N) with lines 2 and 3 respectively.

In summary, the Event Graph G we construct for the above snipped would be of the
following form: (whereby the meaning of the directed edges is defined as in section 5.5.4):

The question that remains is how we are going to compare the event graphs {G1, ..., Gn}
extracted from our procedure to graph G of the manual sequence. Intuitively, we would
like to combine {G1, ..., Gn} to a global event graph GGen by adding the necessary edges
that enforce the ordering between these graphs given by the interleaving steps. Then, we
could extend GGen with the edges defined by G, and check if the resulting graph is still
acyclic. If this were the case, this would imply that the unique topological order dictated
by G corresponds to a specific topological order of GGen. Unfortunately, recalling figure
9.5 from the previous paragraph, we can already tell that this will not be the case, since
the interleaving the manually generated solution is based on differs from the interleaving
generated by our procedure.

We can work around this by instead extending every event graph in {G1, ..., Gn} with G
and checking for cycles. It is important to note, however, that G is not necessarily acyclic
itself: A consumer might for instance ask for a logical signal s to be asserted during some
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step x in the middle of its transition sequence, and deasserted during the remaining steps.
This would of course cause the event Initiate(s) to appear several times in G, which would,
due to the strict order of G, inherently result in a cycle. In the case of the Enzian, this is
not an issue. However, we must nevertheless carefully exclude any commands from the
manually generated sequence, that (similar to our call to apply changes) ensure that the
platform is in a known and correct initial state. For instance, the two gpio sets in the
code snippet above (listing 9.1) must not be added to G: they ensure that these two gpio
pins are deasserted during the boot sequence, as required by the ThunderX.

To determine if the command ordering given by the manual sequence could have been
found by our implementation, we therefore perform the following checks:

(C) For i from 1 to n:
Gi ← Gi ∪G
print(is acyclic(Gi))

Results We have listed both command sequences Cgen and Cman in listings A.2 and
A.1 in the appendix, along with table A.1, which specifies relations Syn and Sem by
referencing the corresponding line numbers in the command sequences, as well as the
corresponding event if applicable.

To summarise the result of the comparison of the command sets, we provide the cardi-
nality sets of interest (A) to (D) which we have identified in the previous paragraph:

Set designation Cardinality
(A) 40
(B) 8
(C) 5
(D) 12

Table 9.7: Summary of command set comparison in appendix table A.1

Hence, there is an exact correspondence (A) between most of the commands in the two
sequences. We will discuss the deviations given by sets (B) to (D) in more detail in the
next paragraph.

As mentioned above, comparing the similarity of the ordering of the two sequences (S2)
required us to construct the Event Graph G of the manual sequence. The table A.1 also
includes the event associated with the commands in the manual sequence, but we refer
to the annotated manual sequence.py file in the code repository of this thesis for a more
convenient representation.

We have found that all checks (C) as defined in the last paragraph evaluated to True,
meaning that combining each Event Graph in {G1, ..., Gn} with G resulted in an acyclic
graph.
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Discussion As mentioned above, we first wish to reason about the deviations of our
two command sets as indicated by sets (B) to (D):

(B) Recalling the definitions given by list 9.6, (B) specifies pairs of commands that are
semantically equivalent yet differ syntactically. In table A.1 of the appendix, we
have provided the reason for lacking syntactic equality for each pair in (B): In every
case, said reason is either ”helper function” or ”margins”. The former means that
the manual solution is calling a helper function at this point to make the sequence
more readable, whereas the automatically generated solution directly replaces such
functions with their definition. The latter refers to differing error margins passed to
the function check voltage. As discussed in the context of our definition of semantic
equivalence, these error margins could differ arbitrarily, which they however do not
in our case; the median value, which generally denotes the target voltage if we allow
for equal deviations above and below is the same for every pair in (B) with differing
margins. What must be noted at this point, however, is that the margins assigned
by our mechanisms are not trustworthy: Rather than accurately calculating the
expected error according to the various data sheets, we have simply used a fixed
tolerance of 5%.

(C) Set (C) defines the commands appearing in the manually generated sequence that
do not semantically correspond to a command in SGen. As discussed in more detail
in the appendix, this has one of two possible reasons: Either the corresponding
conductors are not modelled by our platform instance, or the commands serve to
assert a precondition of the bootstrapping process. In the latter case, the generated
sequence also features said commands, but they are produced by preceding the call
to apply changes and therefore not considered in this evaluation.

(D) Set (D) contains commands in SGen that lack a semantically equivalent command in
Sman. We can once more identify two possible causes for this: Either the command
in question is redundant or concerned with the supply of the DDR4 DRAM banks
of CPU or FPGA, which had not yet been fully implemented in the manually
generated solution. We again refer to the appendix for a more detailed discussion.

In conclusion, the two command sets are not exactly equal but we have also not found
any major discrepancies. Thus, the comparison of their ordering, which we discuss next,
is not rendered nonsensical.

As stated in the results-paragraph, the checks (C) we performed all returned True. This
means that within each transition step, the ordering of the commands our Sequence Gen-
eration mechanisms is trying to enforce is not in conflict with the ordering provided by the
manually generated sequence. This means that ultimately, our mechanism is sufficiently
complete to reproduce an almost equivalent sequence (modulo differing commands) if we
were to adjust the transition interleaving to match said of the manual sequence.

Does this imply anything about the correctness of our Sequence Generation mechanism?
No, unfortunately not; in theory, our Sequence Generation mechanism could also have
generated Event Graphs {G1, ..., Gn} without any edges, i.e. Event Graphs that do not
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specify any restrictions. The predicate Acyclic(Gi ∪ G) for our acyclic G would then
be vacuously true. However, we strongly believe that our generated sequence should at
least in theory and to the extent of our knowledge be able to correctly boot the CPU and
FPGA on the Enzian platform. We say ”to the extent of our knowledge” since we would
not be surprised if there existed additional issues that need to be considered that we are
not aware of.

For instance, the choice of interleaving the manual sequence is based on is clearly delib-
erate: The transition sequences of both CPU and FPGA require their respective clock
signals to be configured in their first transition step and demand that these signals are
stable (have locked onto the target frequencies) as part of the last transition step. The
manual solution boots CPU and FPGA sequentially, with the exception that all the clock
configurations are done as early (a) and all the checks of stability as late (b) as possible
(see figure 9.7). It follows that the phase locking of clock generators probably takes a
considerable amount of time compared to the rest of the operations. This is taken into
account by the manual boot sequence, but our current platform model lacks the expres-
siveness to encode additional timing information into the consumer boot sequences.

Figure 9.7: The manual boot sequence with the clock configuration step labelled with (a) and the
phase-locking check step labelled with (b)

9.3 Conclusion

In this chapter, we have attempted to evaluate the feasibility of our management solu-
tion for the Enzian platform. We have been able to establish an empirical worst-case
runtime bound for online static management for restricted problem instances. However,
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due to said being set to 56.90 seconds, the feasibility of our approach for online static
management remains questionable.

In spite of this, as has been demonstrated by our second evaluation, our approach is
more than sufficiently efficient to find offline static management solutions that can then
be hardcoded into a BMC implementation.

Apart from the efficiency of our mechanisms, we have also attempted to compare a
generated sequence to the existing manually created bootstrap sequence. While these
sequences do differ in some aspects, we have concluded that our mechanisms could be
made to almost reproduce to given manual sequence. We have also observed that this by
itself does not imply anything about the correctness of our mechanisms.
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Chapter 10

Conclusion

This chapter concludes our thesis. In a first section, we summarise our results. Finally,
we outline possible future work in section 10.2.

10.1 Summary

In this thesis, we have discussed a model-mechanism based approach to static power and
clock management. We started by developing a general perspective on what power and
clock management entails on modern platforms and as well as an idea of when it can be
considered correct.

We have used this knowledge to devise a model that captures correct platform behaviour.
This entails the stable states our platform can assume as well as correct transitions
between such states. In connection with such transitions, we have introduced the concept
of events and were able to further refine our ideal vision of correct static management.
We have not been able to integrate bus operability to a satisfactory degree and have
discussed the situations in which our model would fail to adequately capture a transition.

In chapter 6, we have discussed the mechanisms necessary to extract static management
actions from our model. We have seen that in their general form, all problems we are
required to solve are NP-hard. We have introduced appropriate algorithms and, in case
of Sequence Generation, an approximation that made the problem more manageable.

As a proof of concept, we have modelled the Enzian platform and implemented our mech-
anisms. We have discussed why we consider the Enzian to be well-designed and have given
some general platform modelling advice. We have made an effort to increase the efficiency
of our mechanism implementations, occasionally by assuming that our modelling advice
has been followed.

In our evaluation (chapter 9), we have shown that our model-mechanism based approach
is feasible for the Enzian platform. Due to the lack of literature on platform-level power
and clock management, we have based some of our perspective on static management on
observations made in context of the Enzian. Consequently, we cannot be sure that our
model is general enough to capture the behaviour of other platforms, but we think it is
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likely. Therefore, we have found a more generally applicable solution to static power and
clock management.

However, any gain in generality is automatically associated with a loss of specialisation:
By expressing a platform’s behaviour using our general model, we automatically give up
on any more advanced features our platform components might have. For instance, the
MAX15301 provides a non-volatile memory where certain configurations could be stored,
which could be used to change the default voltage provided after a power-cycle on-the-fly.

But in some cases, a static management solution relying on the potentially low-quality
flash memory installed in a MAX15301 may not be not desirable. Perhaps the time of the
designer of such regulators would be better used to provide a more formal specification
instead of additional fancy features.

10.2 Future Work

As already mentioned in the introduction, we have not been able to formally verify the
correctness of our mechanisms. This is therefore the first item we wish to mention in this
section about future work.

With the formal verification in place, we would be able to generate provably correct static
management actions for any platform our model can express. It would thus be interesting
to evaluate how well our model generalises to other platforms. We hypothesise that due
to the need to reduce production and material costs, commercially available platforms
might not exhibit such a clean and optimal design as the Enzian platform does. We thus
think it likely that such platforms would push our model to its limits.

Furthermore, recalling our definition of scope in chapter 4, we have only addressed a
part of power and clock management. To truly provide an alternative to today’s point
solutions, we would need to extend our approach to include dynamic management. As
previously discussed, dynamic management is vital to ensure that no exceptional situation
endangers the health and integrity of our platform’s components.

Currently, our implementation does not exhaust the full potential of being able to generate
all stable platform states that could be adopted next. We could introduce additional
criteria to encourage the selection of a good solution, for instance by increasing the
efficiency of linear regulators as given by ([10], p. 120).

Last but not least, our current implementation lacks integration with any of the interfaces
used for communication between BMCs and consumers. Potentially, if our approach were
used as an online management solution, the dynamic generation of solutions might enable
us to allow consumers more fine-grained control over the state of their input conductors
than provided by the pre-defined power states of the ACPI interface.
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Appendix A

Evaluation 3

This section contains the command sequences along with additional evaluation data dis-
cussed in section 9.2.

A.1 Manually generated sequence

Listing A.1: The manually generated boot sequence, taken from [21]

1 psup_on ()

2 wait_for(’PSUP_PGOOD ’, lambda: "IN1" in power.device_read("pac_cpu", "input_status"), True , 1)

3 check_voltage(’CPU:12 V_CPU0_PSUP ’, lambda: read_pac_adc("pac_cpu", "VMON1"), 4.71, 5.19)

4 check_voltage(’CPU:5 V_PSUP ’, lambda: read_pac_adc("pac_cpu", "VMON2"), 4.75, 5.25)

5 check_voltage(’CPU:3 V3_PSUP ’, lambda: read_pac_adc("pac_cpu", "VMON3"), 3.135 , 3.465)

6 check_voltage(’FPGA :12 V_CPU1_PSUP ’, lambda: read_pac_adc("pac_fpga", "VMON1"), 4.71, 5.19)

7 check_voltage(’FPGA:5 V_PSUP ’, lambda: read_pac_adc("pac_fpga", "VMON2"), 4.75, 5.25)

8 gpio.set_value(’C_PLL_DCOK ’, False)

9 gpio.set_value(’C_RESET_N ’, False)

10 gpio.set_value(’B_OCI2_LNK1 ’, False)

11 gpio.set_value(’B_OCI3_LNK1 ’, False)

12 program_clock_main ()

13 program_clock_cpu ()

14 program_clock_fpga ()

15 program_ir3581 ()

16 wait_for(’B_CLOCK_BLOL ’, lambda: gpio.get_value(’B_CLOCK_BLOL ’), True , 10)

17 enable_pac_out(’pac_cpu ’, ’OUT6’)

18 check_voltage(’CPU:VDD_CORE ’, lambda: read_pac_adc("pac_cpu", "VMON4"), 0.94, 0.96)

19 enable_pac_out(’pac_cpu ’, ’OUT7’)

20 check_voltage(’CPU:0 V9_VDD_OCT ’, lambda: read_pac_adc("pac_cpu", "VMON5"), 0.87, 0.93)

21 enable_pac_out(’pac_cpu ’, ’OUT8’)

22 check_voltage(’CPU:1 V5_VDD_OCT ’, lambda: read_pac_adc("pac_cpu", "VMON6"), 1.425, 1.575)

23 enable_pac_out(’pac_cpu ’, ’OUT9’)

24 check_voltage(’CPU:2 V5_CPU13 ’, lambda: read_pac_adc("pac_cpu", "VMON7"), 2.375 , 2.625)

25 enable_pac_out(’pac_cpu ’, ’OUT10’)

26 check_voltage(’CPU:2 V5_CPU24 ’, lambda: read_pac_adc("pac_cpu", "VMON8"), 2.375 , 2.625)

27 enable_pac_out(’pac_cpu ’, ’OUT11’)

28 enable_pac_out(’pac_cpu ’, ’OUT12’)

29 enable_pac_out(’pac_fpga ’, ’OUT6’)

30 check_voltage(’FPGA:UTIL_3V3 ’, lambda: read_pac_adc("pac_fpga", "VMON3"), 3.135, 3.465)

31 enable_pac_out(’pac_fpga ’, ’OUT9’)

32 enable_pac_out(’pac_fpga ’, ’OUT13’)

33 check_voltage(’FPGA:VCCINTIO_BRAM_FPGA ’, lambda: read_pac_adc("pac_fpga", "VMON10"), 0.873, 0.923, 1)

34 enable_pac_out(’pac_fpga ’, ’OUT15’)

35 check_voltage(’FPGA:VCC1V8_FPGA ’, lambda: read_pac_adc("pac_fpga", "VMON11"), 1.71, 1.89)

36 enable_pac_out(’pac_fpga ’, ’OUT16’)

37 check_voltage(’FPGA:SYS_1V8 ’, lambda: read_pac_adc("pac_fpga", "VMON12"), 1.71, 1.89)

38 enable_pac_out(’pac_fpga ’, ’OUT8’)

39 check_voltage(’FPGA:SYS_2V5_13 ’, lambda: read_pac_adc("pac_fpga", "VMON5"), 2.375, 2.625)

40 enable_pac_out(’pac_fpga ’, ’OUT7’)
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41 check_voltage(’FPGA:SYS_2V5_24 ’, lambda: read_pac_adc("pac_fpga", "VMON4"), 2.375 , 2.625)

42 enable_pac_out(’pac_fpga ’, ’OUT19’)

43 enable_pac_out(’pac_fpga ’, ’OUT18’)

44 enable_pac_out(’pac_fpga ’, ’OUT17’)

45 enable_pac_out(’pac_fpga ’, ’OUT10’)

46 check_voltage(’FPGA:MGTAVCC_FPGA ’, lambda: read_pac_adc("pac_fpga", "VMON7"), 0.855, 0.945)

47 enable_pac_out(’pac_fpga ’, ’OUT14’)

48 enable_pac_out(’pac_fpga ’, ’OUT11’)

49 check_voltage(’FPGA:MGTVCCAUX_L ’, lambda: read_pac_adc("pac_fpga", "VMON8"), 1.71, 1.89)

50 enable_pac_out(’pac_fpga ’, ’OUT12’)

51 check_voltage(’FPGA:MGTVCCAUX_R ’, lambda: read_pac_adc("pac_fpga", "VMON9"), 1.71, 1.89)

52 wait_for(’B_CLOCK_CLOL ’, lambda: gpio.get_value(’B_CLOCK_CLOL ’), True , 10)

53 wait_for(’B_CLOCK_FLOL ’, lambda: gpio.get_value(’B_CLOCK_FLOL ’), True , 10)

54 gpio.set_value(’C_PLL_DCOK ’, True)

55 gpio.set_value(’C_RESET_N ’, True)

Note: When creating the above listing, lines of code that were commented out have been
removed.

A.2 Automatically generated sequence

Listing A.2: The automatically generated boot sequence

1 gpio.set_value(’B_PSUP_ON ’, True)

2 check_voltage(’3v3_psup ’, lambda: read_pac_adc(’pac_cpu ’, ’VMON3 ’), 3.135 , 3.465)

3 check_voltage(’5v_psup ’, lambda: read_pac_adc(’pac_fpga ’, ’VMON2 ’), 4.750 , 5.250)

4 check_voltage(’5v_psup ’, lambda: read_pac_adc(’pac_cpu ’, ’VMON2 ’), 4.750 , 5.250)

5 check_voltage(’12 v_cpu0_psup ’, lambda: read_pac_adc(’pac_cpu ’, ’VMON1’), 4.702, 5.197)

6 check_voltage(’12 v_cpu1_psup ’, lambda: read_pac_adc(’pac_fpga ’, ’VMON1’), 4.702, 5.197)

7 power.device_configure(’clk_main ’, SI5395_Configuration.main)

8 power.device_configure(’clk_cpu ’, SI5395_Configuration.cpu)

9 power.device_write(’ir3581 ’, ’address_lock ’, False)

10 power.device_write(’ir3581 ’, ’loop_1_pmbus_addr ’ ,96)

11 power.device_write(’ir3581 ’, ’loop_2_pmbus_addr ’ ,98)

12 power.device_write(’ir3581 ’, ’address_lock ’, True)

13 power.device_configure(’ir3581 ’, IR3581_Configuration.registers)

14 power.device_write(’ir3581_loop_vdd_core ’, ’VOUT_COMMAND ’, 0.96)

15 enable_pac_out(’pac_cpu ’, ’OUT6’)

16 check_voltage(’vdd_core ’, lambda: read_pac_adc(’pac_cpu ’, ’VMON4 ’), 0.912 , 1.008)

17 enable_pac_out(’pac_cpu ’, ’OUT7’)

18 enable_pac_out(’pac_cpu ’, ’OUT8’)

19 check_voltage(’1v5_vdd_oct ’, lambda: read_pac_adc(’pac_cpu ’, ’VMON6’), 1.425, 1.575)

20 power.device_write(’ir3581_loop_0v9_vdd_oct ’, ’VOUT_COMMAND ’, 0.9)

21 check_voltage(’0v9_vdd_oct ’, lambda: read_pac_adc(’pac_cpu ’, ’VMON5’), 0.855, 0.945)

22 cdv_fdv_mmap [0] = chr (18)

23 time.sleep (0.05)

24 enable_pac_out(’pac_cpu ’, ’OUT10’)

25 enable_pac_out(’pac_cpu ’, ’OUT9’)

26 enable_pac_out(’pac_cpu ’, ’OUT11’)

27 enable_pac_out(’pac_cpu ’, ’OUT12’)

28 check_voltage(’vtt_ddrcpu13 ’, lambda: read_pac_adc(’pac_cpu ’, ’VMON11 ’), 0.713 , 0.787)

29 check_voltage(’2v5_cpu13 ’, lambda: read_pac_adc(’pac_cpu ’, ’VMON7’), 2.375, 2.625)

30 check_voltage(’vtt_ddrcpu24 ’, lambda: read_pac_adc(’pac_cpu ’, ’VMON12 ’), 0.713 , 0.787)

31 check_voltage(’2v5_cpu24 ’, lambda: read_pac_adc(’pac_cpu ’, ’VMON8’), 2.375, 2.625)

32 check_voltage(’vdd_ddrcpu24 ’, lambda: read_pac_adc(’pac_cpu ’, ’VMON10 ’), 1.425 , 1.575)

33 check_voltage(’vdd_ddrcpu24 ’, lambda : power.device_read(’ina226_ddr_cpu_24 ’, ’

BUS_VOLTAGE ’), 1.425 , 1.575)

34 check_voltage(’vdd_ddrcpu13 ’, lambda : power.device_read(’ina226_ddr_cpu_13 ’, ’

BUS_VOLTAGE ’), 1.425 , 1.575)

35 check_voltage(’vdd_ddrcpu13 ’, lambda: read_pac_adc(’pac_cpu ’, ’VMON9 ’), 1.425 , 1.575)

36 wait_for(’B_CLOCK_BLOL ’, lambda: gpio.get_value(’B_CLOCK_BLOL ’), True , 10)

37 wait_for(’B_CLOCK_CLOL ’, lambda: gpio.get_value(’B_CLOCK_CLOL ’), True , 10)

38 gpio.set_value(’C_PLL_DCOK ’, True)

39 gpio.set_value(’C_RESET_N ’, True)

40 power.device_configure(’clk_fpga ’, SI5395_Configuration.fpga)

41 enable_pac_out(’pac_fpga ’, ’OUT9’)

42 enable_pac_out(’pac_fpga ’, ’OUT6’)

43 check_voltage(’vccint_fpga ’, lambda: read_pac_adc(’pac_fpga ’, ’VMON6 ’), 0.855 , 0.945)
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44 check_voltage(’util33 ’, lambda: read_pac_adc(’pac_fpga ’, ’VMON3 ’), 3.135 , 3.465)

45 enable_pac_out(’pac_fpga ’, ’OUT13’)

46 check_voltage(’vccintio_bram_fpga ’, lambda: read_pac_adc(’pac_fpga ’, ’VMON10 ’), 0.855,

0.945)

47 enable_pac_out(’pac_fpga ’, ’OUT15’)

48 check_voltage(’vcc1v8_fpga ’, lambda: read_pac_adc(’pac_fpga ’, ’VMON11 ’), 1.710, 1.890)

49 enable_pac_out(’pac_fpga ’, ’OUT8’)

50 enable_pac_out(’pac_fpga ’, ’OUT17’)

51 cdv_fdv_mmap [8] = chr (66)

52 time.sleep (0.05)

53 enable_pac_out(’pac_fpga ’, ’OUT7’)

54 enable_pac_out(’pac_fpga ’, ’OUT16’)

55 enable_pac_out(’pac_fpga ’, ’OUT18’)

56 enable_pac_out(’pac_fpga ’, ’OUT19’)

57 check_voltage(’sys_1v8 ’, lambda: read_pac_adc(’pac_fpga ’, ’VMON12 ’), 1.710, 1.890)

58 check_voltage(’sys_2v5_24 ’, lambda: read_pac_adc(’pac_fpga ’, ’VMON5’), 2.375, 2.625)

59 check_voltage(’sys_2v5_13 ’, lambda: read_pac_adc(’pac_fpga ’, ’VMON4’), 2.375, 2.625)

60 check_voltage(’vdd_ddrfpga13 ’, lambda : power.device_read(’ina226_ddr_fpga_13 ’, ’

BUS_VOLTAGE ’), 1.140 , 1.260)

61 check_voltage(’vdd_ddrfpga24 ’, lambda : power.device_read(’ina226_ddr_fpga_24 ’, ’

BUS_VOLTAGE ’), 1.140 , 1.260)

62 enable_pac_out(’pac_fpga ’, ’OUT10’)

63 check_voltage(’mgtavcc_fpga ’, lambda: read_pac_adc(’pac_fpga ’, ’VMON7’), 0.855 , 0.945)

64 enable_pac_out(’pac_fpga ’, ’OUT14’)

65 enable_pac_out(’pac_fpga ’, ’OUT12’)

66 enable_pac_out(’pac_fpga ’, ’OUT11’)

67 check_voltage(’mgtvccaux_l ’, lambda: read_pac_adc(’pac_fpga ’, ’VMON8 ’), 1.710 , 1.890)

68 check_voltage(’mgtvccaux_r ’, lambda: read_pac_adc(’pac_fpga ’, ’VMON9 ’), 1.710 , 1.890)

69 wait_for(’B_CLOCK_FLOL ’, lambda: gpio.get_value(’B_CLOCK_FLOL ’), True , 10)

A.3 Comparison

The table below summarises our comparison of the commands featured in the two boot
sequences: The first two columns indicate the line numbers of the manually and auto-
matically generated sequences that are semantically equivalent as defined in section 9.2.
Where applicable, we have additionally included the designation of the corresponding
conductor event.

Note that occasionally, a sequence of several commands C1, C2, ...Cn might semantically
correspond to a single other command C. In that case, we surrounded the line numbers
of C1 to Cn with round brackets (). An example for this is the table row referencing line
15 of Cman: There, the manual sequence calls the helper function program ir3581() that
the automatically generated sequence inlines. In the summary of this table in section 9.2,

Furthermore, there occasionally exist multiple ways of monitoring the state of the same
conductor, which results in different commands producing the same Complete event.
In such cases, said event spans multiple rows, each of which is dedicated to one such
monitoring command. Examples include table rows referencing lines 3 and 6 or 4 and 7
of Cman.

Lastly, when determining the syntactic equivalence of two commands, we have taken the
liberty of ignoring the identifier passed to calls of the check voltage functions. As already
detailed in the evaluation sections, said identifier is only used for logging purposes and
to generate meaningful error messages, and is hence not relevant in the context of this
evaluation.
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Line in Cman Line in Cgen
Syntactically Equal?

Corresponding Event
(Yes / reason why not)

1 1 helper function Initiate(b psup on)

2 None (0) - -

3 5 margins
Complete(12v cpu0 psup)

6 6 margins

4 4 Yes
Complete(5v psup)

7 3 Yes

5 2 Yes Complete(3v3 psup)

8 None (2) - -

9 None (2) - -

10 None (1) - -

11 None (1) - -

12 7 helper function Initiate(clk main)

13 8 helper function Initiate(pll ref clk)

14 40 helper function Initiate(fpga clk)

15 (9 - 13) helper function
(tied to vdd core
and 0v9 vdd oct)

16 36 Yes -

17 15 Yes Initiate(vdd core en)

18 16 margins Complete(vdd core)

19 17 Yes Initiate(vdd oct en 12)

20 21 margins Complete(0v9 vdd oct)

21 18 Yes Initiate(en 1v5 vdd oct)

22 19 Yes Complete(1v5 vdd oct)

23 25 Yes Initiate(en 2v5 cpu13)

24 29 Yes Complete(2v5 cpu13)

25 24 Yes Initiate(en 2v5 cpu24)

26 31 Yes Complete(2v5 cpu24)

27 26 Yes Initiate(en vdd ddrcpu13)

28 27 Yes Initiate(en vdd ddrcpu24)

29 42 Yes Initiate(en util33)

30 44 Yes Complete(util33)

31 41 Yes Initiate(en vccint fpga)

32 45 Yes Initiate(en vccintio bram fpga)

33 46 margins Complete(vccintio bram fpga)

34 47 Yes Initiate(en vcc1v8 fpga)

35 48 Yes Complete(vcc1v8 fpga)

36 54 Yes Initiate(en sys 1v8)

37 57 Yes Complete(sys 1v8)

38 49 Yes Initiate(en sys 2v5 24)

39 58 Yes Complete(sys 2v5 24)

40 53 Yes Initiate(en sys 2v5 13)

41 59 Yes Complete(sys 2v5 13)

42 56 Yes Initiate(en vdd ddrfpga24)

43 55 Yes Initiate(en vdd ddrfpga13)

44 50 Yes Initiate(en vadj 1v8 fpga)
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45 62 Yes Initiate(en mgtavcc fpga)

46 63 Yes Complete(mgtavcc fpga)

47 64 Yes Initiate(en mgtavtt fpga)

48 66 Yes Initiate(en mgtvccaux l)

49 67 Yes Complete(mgtvccaux l)

50 65 Yes Initiate(en mgtvccaux r)

51 68 Yes Complete(mgtvccaux r)

52 37 Yes (tied to pll dc ok)

53 69 Yes Initiate(clock flol)

54 38 Yes Initiate(pll dc ok)

55 39 Yes Initiate(c reset n)

None (3) 14 - Initiate(vdd core)

None (3) 20 - Initiate(0v9 vdd oct)

None (4) (22, 23) - Initiate(b cdv 1v8)

None (4) 28 - Complete(vtt ddrcpu13)

None (4) 30 - Complete(vtt ddrcpu24)

None (4) 32 -
Complete(vdd ddrcpu24)

None (4) 33 -

None (4) 34 -
Complete(vdd ddrcpu13)

None (4) 35 -

None (4) (51, 52) - Initiate(b fdv 1v8)

None (4) 60 - Complete(vdd ddrfpga13)

None (4) 61 - Complete(vdd ddrfpga24)

Table A.1: A comparison of the commands found in the two boot sequences

We conclude this section by providing some explanations for the None instances in the
table, which identify commands in either sequence that do not have a semantically corre-
sponding command in the other sequence. For this purpose, we have labelled each such
None instances with a number in brackets, which identifies the reason why no correspond-
ing command exists:

(0) The single None instance identified with (0) is caused by the fact that we have pre-
viously not been aware of the existence of the PSUP PGOOD signal, that indicates
that the power supply’s output is within regulation.

(1) The None instances marked with (1) are caused by commands that concern con-
ductors that are not being modelled by our Enzian platform instance since they are
not relevant from a power and clock management perspective.

(2) None instances of category (2) are caused by commands that establish the neces-
sary boot-sequence preconditions. In the automatically generated sequence, these
commands have already been created by the call to apply changes that is performed
prior to the consumer transitions.
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(3) None instances marked with (3) are caused by redundant commands present in the
automatically generated sequence: The IR3581 producer [18] on the Enzian plat-
form requires a rather complex instantiation. As a part of this, the default voltages
it should apply to its outputs as well as various other configuration parameters are
written to the IR3581’s registers. Regardless of this, our automatically generated
procedure again specifies the voltages it has assigned to the IR3581’s outputs, which
in case of the boot-sequence happen to correspond to these default values and are
therefore redundant.

(4) The manually generated sequence is not entirely complete: The handling of the
DDR4 DRAM bank supply voltages of CPU and FPGA has not been included yet.
This is the cause for the None instances marked with (4).
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